期刊文献+

高速神经网络HS-K-WTA-2的研究 被引量:1

High-speed Neural Network HS-K-WTA-2
下载PDF
导出
摘要 该文提出了一种新的K-Winners-Take-All神经网络:High-Speed-K-Winners-Take-All-2(HS-K-WTA-2)。HS-K-WTA-2以竞争学习算法为基础。HS-K-WTA-2能够从任何一个数集中识别出K个较大的数,或K个较小的数。该文给出HS-K-WTA-2算法及算法复杂度的分析结果。用专门为研究K-WTA神经网络开发的仿真程序对HS-K-WTA-2、HS-K-WTA和Winstrons进行仿真研究。结果显示:当所取的数集N较大时,HS-K-WTA-2要比Winstrons和HS-K-WTA速度更快。HS-K-WTA-2的硬件实现比Winston的硬件实现要简单,比HS-K-WTA的硬件实现复杂。 A new K-Winners-Take-All neural network: High-Speed-Winners-Take-All-2 (HS-K- WTA-2) is presented. HS-K-WTA-2 can identify the larger elements (or smaller ones) in a data set. The analysis results about HS-WTA-2 algorithm and its complexity are given. HS-K-WTA-2, HS-K-WTA and Winstrons are simulated with a specific design simulation tool software for K-WTA neural network. The results show that the speed of HS-K-WTA-2 is much quicker than Winstrons and HS-K-WTA for a data set N that has a lot of atoms. Hardware implementention of HS-K-WTA- 2 is simpler than Winstrons, and more complicated than HS-K-WTA.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2007年第1期89-91,共3页 Journal of Nanjing University of Science and Technology
关键词 神经网络 竞争学习算法 高速算法 选择K个较大数 K—WTA HS-K-WTA HS-K-WTA-2 neural network competitive learning algorithm high-speed algorithm K-WTA HS-K-WTA HS-K-WTA-2
  • 相关文献

参考文献5

  • 1Yen J C,Chang F J,Chang S.A new Winners-Take-All architecture in artificial neural network[J].IEEE Transactions on Neural Network,1994,5 (5):838-843.
  • 2Yen J C,Guo J I,Chen H C.K-Winners-Take-All circuit with O(N) complexity[J].IEEE Transactions on Neural Network,1995,6 (6):776-778.
  • 3Yen J C,Guo J I,Chen H C.A new K-WinnersTake-All neural network and its array architecture[J].IEEE Transactions on Neural Network,1998,9(5):901 -912.
  • 4陈清华,朱红,杨静宇.一种高速神经网络HS-K-WTA的算法研究[J].南京理工大学学报,2001,25(6):669-672. 被引量:1
  • 5朱红,陈清华,刘国岁.一种高速神经网络HS-K-WTA的研究[J].电子学报,2002,30(7):1020-1022. 被引量:2

二级参考文献3

  • 1Yen J C,IEEE Trans Neural Networks,1998年,9卷,5期,901页
  • 2Tseng Y H,IEEE Trans Computer,1995年,44卷,4期,601页
  • 3Yen J C,IEEE Trans Neural Networks,1994年,5卷,5期,838页

共引文献1

同被引文献10

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部