摘要
该文提出了一种新的K-Winners-Take-All神经网络:High-Speed-K-Winners-Take-All-2(HS-K-WTA-2)。HS-K-WTA-2以竞争学习算法为基础。HS-K-WTA-2能够从任何一个数集中识别出K个较大的数,或K个较小的数。该文给出HS-K-WTA-2算法及算法复杂度的分析结果。用专门为研究K-WTA神经网络开发的仿真程序对HS-K-WTA-2、HS-K-WTA和Winstrons进行仿真研究。结果显示:当所取的数集N较大时,HS-K-WTA-2要比Winstrons和HS-K-WTA速度更快。HS-K-WTA-2的硬件实现比Winston的硬件实现要简单,比HS-K-WTA的硬件实现复杂。
A new K-Winners-Take-All neural network: High-Speed-Winners-Take-All-2 (HS-K- WTA-2) is presented. HS-K-WTA-2 can identify the larger elements (or smaller ones) in a data set. The analysis results about HS-WTA-2 algorithm and its complexity are given. HS-K-WTA-2, HS-K-WTA and Winstrons are simulated with a specific design simulation tool software for K-WTA neural network. The results show that the speed of HS-K-WTA-2 is much quicker than Winstrons and HS-K-WTA for a data set N that has a lot of atoms. Hardware implementention of HS-K-WTA- 2 is simpler than Winstrons, and more complicated than HS-K-WTA.
出处
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2007年第1期89-91,共3页
Journal of Nanjing University of Science and Technology