期刊文献+

次黎曼测地线的刻划

Characterization for Sub-Riemannian Geodesics
下载PDF
导出
摘要 次黎曼测地线问题是变分学中的一个有约束的Lagrange问题,但在变分的过程中有个难点——如何推出约束条件“γ(′t)∈D,在[a,b]上几乎处处成立”的解析式。该文从最优控制论的角度,将次黎曼测地线问题转化为一个最优控制问题,将约束条件γ′(t)∈D转化为k∑i=1ui(t)Xi(t)-γ(′t)=0,进而得到了次黎曼Ham iltonianH(q,p)=12g-1(p|D,p|D)的具体形式。同时将奇异曲线刻划为非正规极值曲线的投影。 The problem of sub-Riemannian geodesics is a Lagrange problem with constraint. How to describe the constraint condition "γ'(t) ∈ D, a. e. [a,b]" is a difficult problem. In this paper we turn the problem of sub-Riemannian geodesics into an optimal control problem, express the constraint to ∑i=1^ku'(t)Xi ( t ) -γ' (t) = 0 , and sub-Riemannian Hamihonian H( q ,p) =1/2g^-1(p|D,p|D)in detail. We also characterize the singular curves into abnormal extreme curves.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2007年第1期134-138,共5页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(10471063)
关键词 次黎曼流形 正规测地线 奇异曲线 sub-Riemannian manifold normal geodesics singular curves
  • 相关文献

参考文献5

  • 1Giannoni F.Existence,multiplicity and regularity for sub-Riemannian geodesics by variational methods[J].SIAM J Control Optim,2000,40 (6):1 840-1 857.
  • 2Montgomery R.Abnormal minimizers[J].SIAM J Control Optim,1994,32 (6):1 605-1 620.
  • 3Piccione P.Variational aspects of the geodesics problem in sub-Riemannian geometry[J].Journal of Geometry and Physics,2001,39:183 -206.
  • 4Montgomery R.A tour of sub-Riemannian geometries:Their geodesics and applications[J].Math Surveys and Monographs,2002,91:13-17.
  • 5Young L C.Lectures on the calculus of variations and optimal control Theory.New York:Wiley,1980.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部