期刊文献+

L-值随机变量

L-valued Random Variables
下载PDF
导出
摘要 研究L-值随机变量(其中L是闭集格或分子生成格与格上拓扑学有关)。受到已有文献中研究L-拓扑空间的思想、方法和技巧的启发,定义FLc(Rn)={A∈LRn对每个余素元,α{x∈Rn A(x)≥α}是Rn中的非空紧集}上一个分明拓扑TFLc以及L-子集族上的三种度量。在此基础上定义几种L-值随机变量并讨论了它们的初步性质。 We have investigated L-valued random variables (L is a closed-set lattice or moleculely generated lattice relating to lattice theory and topology). Receiving already has inspiration of thought, method and skill studying L-topological space in documents, we have defined a crisp topology TFε^L on Fε^L(R^n) = {A∈LR^n | for each a in Copr(L), {x ∈R^n |A(x) ≥α} is non-empty compact set of R^n } and several kinds of metric on L-subset groups, some properties have discussed of them. On this basis, we have defined several L-valued random variables and discussed preliminary nature of them.
作者 包洪亮
出处 《模糊系统与数学》 CSCD 北大核心 2007年第1期51-57,共7页 Fuzzy Systems and Mathematics
关键词 L-拓扑空间 闭集格 分明拓扑 L-值随机变量 HAUSDORFF度量 L-topological Space Closed-set Lattice Crisp Topology L-valued Random Variable Hausdorff Metric
  • 相关文献

参考文献13

  • 1Engelking R. General topology[M]. Warszawa:Polish Scientific Publishers,1977.
  • 2Castaing C, Valadier M. Convex analysis and measurable multifunctions[A]. Lecture Notes in Mathematics [C]. Berlin: Springer, 1977: 580.
  • 3Kwakernaak H. Fuzzy random variables I[J]. Information Sciences,1978,15:1~29.
  • 4Puri M L,Ralescu D A. Fuzzy random variables[J]. J. Math. Anal. Appl. ,1986,114:409~422.
  • 5Kratschmer V. A unified approach to fuzzy random variables[J]. Fuzzy Sets and Systems,2001,123:1~9.
  • 6Birkhoff G. Lattice theory(3rd edition)[M]. New York:American Mathematical Society,1967.
  • 7Chen D G,Zhang L G. Signed fuzzy-valued measures and Radon-Nikodym theorem of fuzzy-valued measurable functions[J]. Southeast Asian Bulletin of Mathematics,2002,26: 375~385.
  • 8Wu H C. The central limit theorems for fuzzy random variables[J]. Information Sciences,1999,120:239~256.
  • 9Wu H C. Fuzzy-valued integrals of fuzzy-valued measurable functionswith respect to fuzzy-valued measures based on closed intervals[J]. Fuzzy Sets and Systems, 1997,87: 65~78.
  • 10Wu H C. The fuzzy Riemann-Stieltjes integral [J]. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 1998,6 (1): 51 ~ 67.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部