期刊文献+

基于小波包变换的分频图像融合方法 被引量:5

A Fusion Algorithm of Image Based on Wavelet Package and Different Frequencies Processing
下载PDF
导出
摘要 利用多源遥感数据有利于以多种数据集互补的方式提供单一数据集无法提供的信息,图像融合则是多源信息集成的关键之一。本文提出了基于小波包变换的分频图像融合流程,即对于用小波包分解得到的低频和高频部分,采用不同的融合策略。采用熵、联合熵、偏差指数和边缘指数等作为定量指标,对这种流程的融合结果进行了质量评价。通过ETM+多光谱和全色图像融合实验表明这种方法在光谱信息保持和纹理信息增强上相较与传统融合方法有明显优势。 The use of multi-source remote sensing images is beneficial as multiple datasets can complement each other by providing an alternative or complementary means when the information in question is not reliably found from one dataset. Image fusion is one of the key techniques to integrate different types of sources together. An approach for image fusion based on wavelet package and different frequency processing is proposed in this paper. Entropy, cross entropy, difference index and edge index are employed to estimate the quality of the result image generated by fusing ETM + ( Enhanced Thematic Mapper) multi-spectrum image and panchromatic image. Experimental result shows this approach is good at spectral reservation and texture enhancement.
出处 《遥感信息》 CSCD 2007年第1期7-10,89,I0002,共6页 Remote Sensing Information
基金 国家863计划项目(2003AA135118)
关键词 图像融合 小波包 图像质量评价 fusion wavelet package transformation image quality estimate
  • 相关文献

参考文献18

  • 1Pellemans A HJ M,Jordans R WL,Allewiijin R.Merging multispectral and panchromatic SPOT images with respect to the radiometric properties of the sensor[J].PE&RS,1993,59(1):81~87.
  • 2Hayden R,Dalke G W,Henkel J,et al.Application of the IHS color transform to the pocessing of multisensor data and image enhancement,proceedings of the international symposium on remote sensing of arid and semi-arid lands[C].Cairo Egypt,1982.599~616.
  • 3Jim V.Multispectral imagery band sharpening study[J].PE&RS,1996,62(9):1057~1083.
  • 4Chaves P S,Sides S C,Anderson J Am.Comparison of three different method to merge multiresolution and multispectral data,land TM and SPOT pnchromatic[J].ISPRS Journal of Photogrammetry and Remote Sensing,1991(46):19~30.
  • 5Yesou H,Besnus Y,Rolet Y.Extraction of spectral information from landsat TM data and merger with SPOT panchromatic imagery-A contribution to the study of geological structures[J].ISPRS Journal of Photogrammetry and Remote Sensing,1993,48(5):23~36.
  • 6Ehlers M.Multisensor image fusion techniques in remote sensing[J].ISPRS Journal of Photogrammetry and Remote Sensing,1991(46):19~30.
  • 7Li H,Manjunath B S,Mitra S K.Multisensor image fusion using the wavelet transform[J].Graphical Models and Image Processing,1995,27(3):235~244.
  • 8Yocky D A.Image merging and data fusion by means of the discrete two dimensional wavelet transform[J].Journal of the Optical Society of America,1995,12(9):1834~1841.
  • 9Eryong Yu,Runshen Wang.Fusion and enhancement of the multispectral image with wavelet tansform[J].Computer Engineering & Science,2001,23(1):47~50.
  • 10Nunez J.Multiresolution-bsed image fusion with additive wavelet decomposition[J].IEEE Trans on Geoscience and Remote Sensing,1999,37(3):1204~1211.

二级参考文献46

  • 1Li H, Manjunath B S, Mitra S K. Multisensor Image Fusion Using the Wavelet Transform CJ]. Graphical Models and Image Processing, 1995, 27(3) ,235-244.
  • 2Yocky D A. Image Merging and Data Fusion by Means of the Discrete Two Dimensional Wavelet Transform[J].J Opt Soc Am A, 1995, 12(9):1834-1841.
  • 3Eryong Yu, Runsheng Wang, Fusion and Enhancement of the Multispectral Image with Wavelet Transform [J].Computer Engineering & Science, 2001, 23 (1): 47 - 50.
  • 4Nunez J. Multiresolution-Based Image Fusion with Additive Wavelet Decomposition[J]. IEEE Trans on Geosciences and Remote Sensing, 1999, 37(3),1204-1211.
  • 5Zhengxing Cheng. Wavelet Analysis Algorithm and Application[D]. Jiao Tong University Press of Xi An,1998.
  • 6Ramchanclran K, Vetterli M, Best Packet Bases in A Ratedistortion Sense[J]. IEEE Trans Image Processing, 1993,2(2) : 160-176.
  • 7Coifman R R, Wickerhauser M V. Entropy Based Algorithm for Best Basis Selection [J]. IEEE Trans Information Theory, 1992,38(2) ,713-718.
  • 8Daubechies I. Orthonormal Bases of Compactly Supported Wavelets [J]. Commun Pure Appl Math, 1988, 41: 909-996.
  • 9Mallat S. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation[J]. IEEE Trans Pattern Anal Maeh Intell,1989,11(7):674-693.
  • 10Cohen A, Daubechies I, Feauveau J. Biorthogonal Bases of Compactly Supported Wavelets [J]. Commun Pure Appl Math,1992, XLV:484-560.

共引文献171

同被引文献40

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部