期刊文献+

散乱噪声点云的数据分割 被引量:12

DATA SEGMENTATION OF UNORGANIZED NOISE POINT-CLOUD
下载PDF
导出
摘要 提出基于边界曲线微分几何特征的新方法分割散乱噪声点云。改进TAUBIN方法以精确恢复散乱噪声数据的主曲率和主方向。通过分析散乱点在主方向的曲率变化,达到识别G1、G2连续边界点的目的。获得的边界点形成边界带,将点云分割为多块子区域。最后采用区域增长的方法提取各子区域。试验结果表明所提出的方法能够克服噪声影响,有效提取散乱噪声点云的G1、G2边界。对复杂曲面模型,该方法也能够直接获得较好的G2连续边界。 Based on differential-geometry features of edge curves, a new data segmentation method is proposed to segment the unorganized noise point-cloud. An algorithm revised from the TAUBIN's paper is put forward first to estimate the principle curvatures and principle directions of the unorganized noise points. By analyze the variability of curvature in principle direction for each point, the G^1 or G^2 continuous edge-points can be detected. The acquired edge-points form into edge stripes, which segment the point-cloud into a few sub-regions. Finally a region-growing way is adopted to identify every, sub-area. Results indicate that the presented method can overcome noise influence and recognize the G^1 and G^2 edges of unorganized noise point-cloud effectively, and the method can directly acquire good G^2 edges of the complicated object.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2007年第2期230-233,共4页 Journal of Mechanical Engineering
关键词 散乱噪声点云 数据分割 曲率估计 Unorganized noise point-cloud Data segmentation Curvature estimation
  • 相关文献

参考文献9

  • 1MILROY M J,BRADLEY C,VICKERS G W.Segmentation of a wrap-around model using an active contour[J].Computer-Aided Design,1997,29(4):299-320.
  • 2BESL P J,JAIN R C.Segmentation through variable-order surface fitting[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(2):167-192.
  • 3胡鑫,习俊通,金烨.基于图像法的点云数据边界自动提取[J].上海交通大学学报,2002,36(8):1118-1120. 被引量:30
  • 4HUANG J,MENQ C H.Automatic data segmentation for geometric feature extraction from unorganized 3-D coordinate points[J].IEEE Transaction on Robotics and Automation,2001,17(3):268-279.
  • 5KIM H C,HUR S M,LEE S H.Segmentation of the measured point data in reverse engineering[J].International Journal Advanced Manufacturing Technology,2002,20:571-580.
  • 6CARMO M D.曲线与曲面的微分几何:数学[M].北京:机械工业出版社,2004.
  • 7TAUBIN G.Estimating the tensor of curvature of a surface from a polyhedral approximation[C]//Proceedings of the fifth international conference on Computer Vision,1995:902-907.
  • 8HAMEIRI E,SHIMSHONI I.Estimating the principal curvatures and the Dauboux frame from real 3-D range data[J].IEEE Transaction on system,man and cybernetics-Part B:Cybernetics,2003,33(4):626-637.
  • 9BENK(O) P,V(A)RADY T.Segmentation methods for smooth point regions of conventional engineering objects[J].Computer-Aided Design,2004,36:511-523.

二级参考文献1

共引文献29

同被引文献90

引证文献12

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部