期刊文献+

蚁群聚类组合算法的研究 被引量:1

Algorithm based on combination of ACA and clustering analysis
下载PDF
导出
摘要 聚类分析作为数据挖掘中一个重要的组成部分,主要用于在潜在的数据中发现有价值的数据分布和数据模式。在研究基本蚁群聚类模型、信息熵以及LF算法和K-means算法的基础上,提出了一种蚁群聚类组合算法策略。 As one of the most important domains of data mining, clustering analysis is mainly used for identifying valuable data distribution and data mode in the potential data. Based on the study of basic clustering model, information entropy and two classical clustering analysis algorithms (LF and K- means), this paper puts forward an algorithm which is based on the combination of ACA and clustering analysis.
作者 张群 张利敏
出处 《武汉科技大学学报》 CAS 2007年第1期83-86,共4页 Journal of Wuhan University of Science and Technology
关键词 聚类分析 蚁群算法 LF算法 K—means算法 clustering analysis ACA LF algorithm K-means algorithm
  • 相关文献

参考文献5

二级参考文献23

  • 1Dorigo M,Maniezzo V,Colorni A.Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Trans On System,Man,and Cybernetics,1996 ;26( 1 ) :29~41
  • 2E Lumber,B Faieta. Diversity and adaption in populations of clustering ants[C].In:J-A Meyer,S W Wilson Eds. Proceeding of the Third International Conferrence on Simulation of Adaptive Behavior:From Animals to animates, MIT Press/Bradford Books, Cambridge, MA,1994: 501~508
  • 3N Monmarche.On data clustering with artificial ants[C].In:Data Mining with Evolutionary Algorithms,Research Directions-papers from the AAAI Workshop ed. Menlo Park,CA:AAAI press,1999:23~26
  • 4Rafael S Parpinelli,Heitor S Lopes,Alex A Freitas. Data mining with a ant colony optimization algorithm[J].IEEE Trans On Evolution Computing, 2002 ;6 (4): 321~332
  • 5H S Lopes,M S Coutinho,W C Lima. E Sanchez,T Shibata,L Zadeh Eds. A evolutionary approach to simulate cognitive feedback learning in medical domain :Genetic Algorithm and Fuzzy Logic System :Soft Computing Perspectives[M].Singapore: World Scientific, 1998:193~207
  • 6Wagstaff K, Cardie C, Rogers S, Schroedl S. Constrained K-means clustering with background knowledge. In: Brodley C, Danyluk AP, eds. Proc. of the 18th Int'l Conf. on Machine Learning (ICML 2001). San Francisco: Morgan Kaufmann Publishers, 2001.577-584.
  • 7Blake C, Merz J. UCI repository of machine learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.htmi
  • 8Klein D, Kamvar S, Manning C. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In: Sammut C, Hoffmann A, eds. Proc. of the 19th Int'l Conf. on Machine Learning (ICML 2002). San Francisco:Morgan Kaufmann Publishers, 2002. 307-314.
  • 9Bottou L, Bengio Y. Convergence properties of the K-means algorithm. In: Tesauro G, Touretzky DS, Leen TK, eds. Advances in Neural Information Processing Systems 7. Cambridge: MIT Press, 1995.585-592.
  • 10Halkidi M, Batistakis Y, Vazirgiannis M. Cluster validity methods: Part Ⅰ. SIGMOD Record, 2002,31(2):40-45.

共引文献63

同被引文献8

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部