期刊文献+

挤压态镁合金ZK60的超高周疲劳行为 被引量:15

ULTRA-HIGH CYCLE FATIGUE BEHAVIOR OF THE AS-EXTRUDED MAGNESIUM ALLOY ZK60
下载PDF
导出
摘要 利用超声疲劳实验研究了挤压态镁合金ZK60的超高周疲劳行为.结果表明,合金的疲劳S—N曲线在5×10^6-10^8cyc范围内存在一平台,而在10^8-10^9cyc范围内,疲劳强度逐渐降低,对应于10^9cyc的疲劳强度为(90±5)MPa.SEM断口观察表明,在5×10^6-10^8cyc范围内,疲劳裂纹基本上萌生于试样表面或亚表面,而在10^8-10^9cyc范围内,疲劳裂纹主要萌生于试样内部的非金属夹杂物.通过测定疲劳源区的尺寸,估算的合金疲劳强度与实验结果基本一致.疲劳源的形成是由微裂纹在多个夹杂物处起裂和合并所引起的.因此,合金的疲劳强度不是由最大夹杂物尺寸决定,而是取决于由多个夹杂物组成的“缺陷区”尺寸.通过测定多个部位的“缺陷区”尺寸,可以有效的估算合金的疲劳强度. The experiments of the fatigue behavior of the as-extruded Mg alloy ZK60 in a regime of 106-109 cyc revealed that a plateau exists in the regime of 5×10^6-10^8 cyc, whereas the fatigue strength gradually decreases in the regime of 10^8-10^9 cyc, and the fatigue strength corresponding to 10^9 cyc is (90±5) MPa. SEM observation indicated that the fatigue crack mostly initiated at the surface or subsurface for the samples failed in the regime of 5×10^6-10^8 cyc, and at the internal non-metallic inclusion for the samples failed between 10^8 and 10^9 cyc. Through determining the size of the fatigue crack initiation area, the fatigue strength of the alloy is estimated, which is basically consistent with the experimental results. Analysis of fractographs indicated that the formation of the fatigue crack initiation area is caused by the crack initiation at several inclusions and subsequent crack coalescence. Therefore, the fatigue strength seems not to be determined by the maximum inclusion, but by the " defect area " consisting of several inclusions. According to determination of the sizes of " defect areas " at different locations, the fatigue strength of the alloy can be effectively evaluated.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2007年第2期144-148,共5页 Acta Metallurgica Sinica
基金 国家自然科学基金50431020~~
关键词 镁合金 超高周疲劳 非金属夹杂 疲劳强度 Mg alloy, ultra-high cycle fatigue, non-metallic inclusion, fatigue strength
  • 相关文献

参考文献11

  • 1曾荣昌,韩恩厚,柯伟,刘路,徐永波.挤压镁合金AM60的腐蚀疲劳[J].材料研究学报,2005,19(1):1-7. 被引量:14
  • 2Mayer H, Papakyriacou M. Int J Fatiaue, 2003; 25:245
  • 3Mayer H, Papakyriacou M, Stanzl-Tschegg S E, Tschegg E, Zettl B, Lipowsky H, Stich A. Mater Corros, 1999; 50: 81
  • 4Horstemeyer M F, Yang N, Gall K, Mcdowell D L, Fan J, MGullett P. Acta Mater, 2004; 52:1327
  • 5Wang Q G, Apelian D, Grifllth J R. Proc Materials Solutions 98, Rosemont, IL, USA, Materials Park, OH: ASM International, 1998:217
  • 6Tokaji K, Kamakura M. Int J Fatigue, 2004; 26:1217
  • 7Xu D K, Liu L, Xu Y B, Han E H. J Alloy Compd, (In press)
  • 8Ogarrevic V V, Stephens R I. Annu Rev Mater Sci, 1990; 20:141
  • 9张继明,杨振国,张建锋,李广义,李守新,惠卫军,翁宇庆.零夹杂42CrMo高强钢的超长寿命疲劳性能[J].金属学报,2005,41(2):145-149. 被引量:21
  • 10张继明,杨振国,李守新,李广义,惠卫军,翁宇庆.汽车用高强度弹簧钢54SiCrV6和54SiCr6的超高周疲劳行为[J].金属学报,2006,42(3):259-264. 被引量:25

二级参考文献36

  • 1张继明,张建锋,杨振国,李守新,惠卫军,翁宇庆.高强钢中最大夹杂物的尺寸估计与疲劳强度预测[J].金属学报,2004,40(8):846-850. 被引量:37
  • 2张继明,杨振国,张建锋,李广义,李守新,惠卫军,翁宇庆.零夹杂42CrMo高强钢的超长寿命疲劳性能[J].金属学报,2005,41(2):145-149. 被引量:21
  • 3曾荣昌,周婉秋,韩恩厚,柯伟.pH值对挤压Mg合金AM60腐蚀的影响[J].金属学报,2005,41(3):307-311. 被引量:14
  • 4李守新.超细晶钢的力学行为,超细晶钢[M].北京:冶金工业出版社,2003.891.
  • 5Fukumoto S, Mitchell A. Proceeding of the 1991 Vacuum Metallurgy Conference on the Melting and Processing of Specialty Materials I & SS, USA: Pittsburgh, 1991:3.
  • 6Naito T, Ueda H, Kikuchi M. Met Trans, 1984; 15A: 1431.
  • 7Asami K, Sugiyama Y. Heat Treatment Technol Assoc,1985; 25:147.
  • 8Murakami Y. In: Blom A F ed., Proceedings of the 8th International Fatigue Congress, EMAS, Stockholm, Sweden, June, 2002:2927.
  • 9Hu C T, Tarn C L. Mater Sci Eng, 1989; A118:25.
  • 10Rittel D, Roman I. Iht J Fat, 1989; 111:177.

共引文献54

同被引文献289

引证文献15

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部