期刊文献+

TiN/Si_3N_4纳米多层膜硬度对Si_3N_4层厚敏感性的研究 被引量:3

STUDY ON THE SENSITIVITY OF HARDNESS OF TiN/Si_3N_4 NANO-MULTILAYERS TO Si_3N_4 LAYER THICKNESS
下载PDF
导出
摘要 通过反应磁控溅射制备了一系列不同Si_3N_4层厚的TiN/Si_3N_4纳米多层膜,利用X射线衍射仪、高分辨透射电子显微镜、扫描电子显微镜和微力学探针表征了多层膜的微结构和硬度,研究了其硬度随Si_3N_4层厚微小改变而显著变化的原因.结果表明,在TiN调制层晶体结构的模板作用下,溅射态以非晶存在的Si_3N_4层在其厚度小于0.7nm时被强制晶化为NaCl结构的赝晶体,多层膜形成共格外延生长的{111}择优取向超晶格柱状晶,并相应产生硬度显著升高的超硬效应,最高硬度达到38.5 GPa.Si_3N_4随自身层厚进一步的微小增加便转变为非晶态,多层膜的共格生长结构因而受到破坏,其硬度也随之降低. TiN/Si3N4 nano-multilayers with different Si3N4 modulation thicknesses were reactively deposited by magnetic sputtering in order to study the sensibility of hardness of TiN/Si3N4 multilayers on the change of Si3N4 thickness. The microstructure of the multilayers was characterized with XRD, HRTEM and SEM. A nanoindentor was introduced to measure the hardness. Results show that Si3N4, normally amorphous in deposition state, could form a NaCl-type pseudo-crystal structure due to the template effect of TiN crystal layer when the thickness is less than 0.7 nm. Crystallized Si3N4 layers and TiN template layers grow coherently into columnar crystals with {111} preferred orientation growth. Correspondingly, the hardness of the films was enhanced to a maximum value of 38.5 GPa, showing a superhardness effect. Further increasing Si3N4 layers thickness, the coherent interfaces of the multilayers were damaged and Si3N4 layers become amorphous, accompanying by the decline in the hardness of the coatings.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2007年第2期154-158,共5页 Acta Metallurgica Sinica
基金 国家自然科学基金50571062~~
关键词 TiN/Si3N4纳米多层膜 外延生长 晶化 超硬效应 TiN/Si3N4 nano-multilayer, epitaxial growth, crystallization, superhard effect
  • 相关文献

参考文献19

  • 1Helmersson U, Todorova S, Barnett S A, Sundgren J E, Markert L C, Greene J E. J Appl Phys, 1987; 62:481
  • 2Sproul W D. Science, 1996; 273:889
  • 3Veprek S, Reiprich S, Li S Z. Appl Phys Lett, 1995; 66: 2640
  • 4Veprek S, Niederhofer A, Moto K, Bolom T, Mannling H D, Nesladek P, Dollinger G, Bergmaier A. Surf Coat Technol, 2000; 133-134:152
  • 5Chen Y H, Lee K W, Chiou W A, Chung Y W, Keer L M. Surf Coat Technol, 2001; 146-147:209
  • 6Soederberg H, Oden M, Molina-Aldereguia J M, Hultman L. J Appl Phys, 2005; 97:114327
  • 7Chen Y H, Guruz M, Chung Y W, Keer L M. Surf Coat Technol, 2002; 154:162
  • 8Veprek S, Maritza G J, Heijman V, Karvankova P, Prochazka J. Thin Solid Films, 2005; 476:1
  • 9Kim C, Qadri S B, Scanlon M R, Cammarata R C. Thin Solid Films, 1994; 240:52
  • 10Tian J W, Han Z H, Lai Q X, Yu X J, Li G Y, Gu M Y. Surf Coat Technol, 2004; 176:267

二级参考文献37

  • 1[1]Helmersson U, Todorova S, Barnett S A, Sundgren J E, Markert L C and Greene J E 1987 J. Appl. Phys. 62 481
  • 2[2]Shinn M, Hultman L and Barnett S A.1992 J. Mater. Res. 7 901
  • 3[3]Xu Juhua, Li Geyang and Gu Mingyuan 2000 Thin Solid Films. 37045
  • 4[4]Sproul W D 1996 Science 273 889
  • 5[5]Koehler J S 1970 Phys. Rev. B 2 547
  • 6[6]Li Geyang, Han Zenghu, Tian Jiawan, Xu Junhua and Gu Mingyuan 2002 J. Vac. Sci. Technol. A 20 674
  • 7[7]Li Geyang, Xu Junhua, Zhang Liuqiang, Wu Liang and Gu Mingyuan 2001 J. Vac. Sci. Technol. B 19 94
  • 8[8]Mirkarimi P B, Hultman L and Barnett S A 1990 Appl. Phys. Lett.57 2654
  • 9[9]Nordin M, Larsson M and Hogmark S 1998 Surf. Coat. Technol.106 234
  • 10[10]Yashar P, Barnett S A, Rechner J and Sproul W D 1998 J. Vac.Sci. Technol. A 16 2913

共引文献42

同被引文献127

引证文献3

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部