摘要
如果图G的每个极小点割(边割)都孤立一个点,则图G是超点连通(超边连通)的。图G的至少孤立一条边的边割称为限制性边割,其最小基数计作λ′(G)。当λ′(G)=ξ(G)时,称图G是λ′-最优,其中ξ(G)是图G的最小边度。本文给出了点积图是超点连通、超边连通、的一些充分条件。
A graph G is super-κ(super-λ ) if every minimum vertex-eut(edge-cut) isolates a vertex of G. An edge set S is called a restricted edge-cut of G if G-S is disconnected without isolated vertices. Denote by λ′(G) the eardinality of a minimum restricted edge-cut.Then λ′ (G) ≤ ξ(G) ,where ξ(G) is the minimum edge degree of G. If λ′(G) = ξ(G) ,then G is called λ′-optimal. In this paper,we give some sufficient conditions for a dotgraph to be super-κ,super-λ ,and λ′-optimal.
出处
《石河子大学学报(自然科学版)》
CAS
2006年第6期782-785,共4页
Journal of Shihezi University(Natural Science)
关键词
限制性边连通
超点连通
超边连通
restricted edge-cut
super connectivity
super edge-connectivity