期刊文献+

点积图的超连通性(英文)

Super Connectivity of Dotgraphs
下载PDF
导出
摘要 如果图G的每个极小点割(边割)都孤立一个点,则图G是超点连通(超边连通)的。图G的至少孤立一条边的边割称为限制性边割,其最小基数计作λ′(G)。当λ′(G)=ξ(G)时,称图G是λ′-最优,其中ξ(G)是图G的最小边度。本文给出了点积图是超点连通、超边连通、的一些充分条件。 A graph G is super-κ(super-λ ) if every minimum vertex-eut(edge-cut) isolates a vertex of G. An edge set S is called a restricted edge-cut of G if G-S is disconnected without isolated vertices. Denote by λ′(G) the eardinality of a minimum restricted edge-cut.Then λ′ (G) ≤ ξ(G) ,where ξ(G) is the minimum edge degree of G. If λ′(G) = ξ(G) ,then G is called λ′-optimal. In this paper,we give some sufficient conditions for a dotgraph to be super-κ,super-λ ,and λ′-optimal.
作者 李锐
出处 《石河子大学学报(自然科学版)》 CAS 2006年第6期782-785,共4页 Journal of Shihezi University(Natural Science)
关键词 限制性边连通 超点连通 超边连通 restricted edge-cut super connectivity super edge-connectivity
  • 相关文献

参考文献5

  • 1F T Boesch.Synthesis of reliable networks-a survey[J].IEEE Trans Reliability,1986,35:240-246.
  • 2A H Esfahanian,S L Hakimi.On computing a conditional edge connectivity of a graph[J].J Inform Processing Lett,1998,27:195-199.
  • 3M Wang,Q Li.Conditional edge connectivity properties,reliability comparisons and transitivity of graphs[J].Discrete Math,2002,258:205-214.
  • 4J M Xu.On restricted edge-connectivity of graphs.Discrete Math,2000,243:291-298.
  • 5N Ueffing,L Volkmann.On restricted edge-connectivity and minimum edgedegree,Ars Combinatoria,2003,66:193-2003.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部