期刊文献+

面向决策支持的交通运输信息平台研究 被引量:4

Research on Transportation Information Platform Orient to Decision Support
下载PDF
导出
摘要 传统的交通运输信息类网站存在着作用的局限性以及收集信息与参与决策的弱关联性,通过对信息采集、数学建模、数据挖掘等知识的研究,提出了一种面向决策支持的交通运输信息平台解决方案。该方案利用网站发布信息,结合信息采集技术收集信息,并根据后台构建的数学模型和数据挖掘技术对信息进行整理并归纳出其隐藏的知识和规律。通过实验室的使用,可以看出,该方案可以有效地对信息进行收集、整理、建模,为交通运输行业构建科学的决策支持系统提供支持。 The limitation of function and weak relativity between information gathering and decision participating exists in conventional transportation information websites. In order to solve these questions, a decision-making-support-oriented solution to transportation information platform is presented by researching knowledge of information gathering, mathematics modeling, and data mining in this paper. This solution utilizes websites to issue information, employs information gathering technology to gather information, and can sum up the knowledge and laws hidden in information by mathematics model and data mining technology supported in the backstage. Through application in the laboratory, the result shows that this solution can effectively gather, trim, and model information. Moreover, it offers support to design DSS in transportation industry.
出处 《交通科技》 2007年第1期81-83,共3页 Transportation Science & Technology
关键词 交通运输 信息采集 数据挖掘 数学模型 决策支持系统 transportation information gathering data mining mathematics model DSS
  • 相关文献

参考文献5

二级参考文献17

  • 1[1]Srivastava J. Web usage mining: Discovery and application of usage patterns from web data[C]. SIGKDD Explorations, 2000.
  • 2[2]Barrett R, Maglio P P, Kellen D C. How to personalize the Web[C]. Proceedings of the Conference on Human Factors in Computing Systems (CHI'97), ACM Press, New York,1997.
  • 3[3]Rossi G, Schwabe D, Guimar ?鉫s R M. Designing personalized Web applications[C].10th WWW Conference, Hong Kong, 2001, ACM 1-58113-348-0/01/0005.
  • 4[4]Vander Mee D, Dutta K, Datta A, et al. Enabling scalable online personalization on the Web[C]. Proceedings of the 2nd ACM conference on Electronic commerce, 2000. 185-196.
  • 5[5]Sarukkai P R. Link prediction and path analysis using markov chains[C]. 9th WWW Conference, Amsterdam, 2000.
  • 6[6]Mobasher R, Cooley R, Srivastava J. Creating adaptive Web sites through usage-based clustering of URLs[C]. Procee-dings of the 1999 IEEE Knowledge and Data Engineering Exchange Workshop (KDEX'99), 1999.
  • 7[7]Perkowitz M , Etzioni O. Towards adaptive Web sites: Conceptual framework and case study[C]. Artificial Intelligence 118 (2000), 2000.245-275.
  • 8[8]Ossenbruggen J, Geurts J, Cornelissen F. Towards second and third generation Web-based multimedia[C].10th WWW Conference,Hong Kong,2001,ACM 1-58113-348-0/01/00 05.
  • 9[9]Hjelsvold R,Vdaygiri S.Web-based personalization and management of interactive video[C]. 10th WWW Conference, Hong Kong, 2001, ACM 1-58113-348-0/01/0005.
  • 10[10]Yu H, Han J, Chen K. PEBL:Positive example based learning for Web pageclassification using VSM[C]. ACM SIGKDD, 2002.

共引文献310

同被引文献46

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部