期刊文献+

有理Bézier曲面的标准化 被引量:3

Standardization of Rational Bézier Surfaces
下载PDF
导出
摘要 根据Mbius定理给出了有理Bézier曲面通过线性Mbius变换进行标准化的充要条件.为了将任意双三次有理Bézier曲面标准化,提出了一种二次重新参数化算法.该算法通过对4条边界的Mbius变换进行线性插值,将双三次有理Bézier曲面4个角点权因子都变为1.最后通过实例说明了文中算法的有效性. The sufficient and necessary condition for the existence of linear Mobius transformations that can standardize the rational Bézier surfaces is given based on Mobius reparameterization theorem. To obtain the standard form of an arbitrary cubic rational Bézier surface, we then present a quadratic reparameterization algorithm to reparameterize the surface so that all the corner weights of the surface are equal to one. Examples are included to show the performance of the new method.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2007年第2期245-250,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60403047 60533070) 国家"九七三"重点基础研究发展规(2004CB719400) 高等学校全国优秀博士学位论文作者专项资金(200342) 教育部新世纪优秀人才支持计划(NCET-04-0088)
关键词 有理BÉZIER曲面 MOBIUS变换 二次重新参数化 rational Bézier surfaces Mobius transformation quadratic reparameterization
  • 相关文献

参考文献11

  • 1Farouki R T.Optimal parameterizations[J].Computer Aided Geometric Design,1997,14(2):153-168.
  • 2Zheng J M.Minimizing the maximal ratio of weights of a rational Bézier curve[J].Computer Aided Geometric Design,2005,22(3):275-280.
  • 3Jüttler B.A vegetarian approach to optimal parameterizations[J].Computer Aided Geometric Design,1997,14(9):887-890.
  • 4Yeh S-S,Hsu P-L.The speed-controlled interpolator for machining parametric curves[J].Computer-Aided Design,1999,31(5):349-357.
  • 5Costantini P,Farouki R T,Manni C,et al.Computation of optimal composite re-parameterizations[J].Computer Aided Geometric Design,2001,18(9):875-897.
  • 6郭凤华,杨兴强.Bézier曲线的一种重新参数化新方法[J].工程图学学报,2006,27(2):108-111. 被引量:5
  • 7梁锡坤.Bernstein-Bézier类曲线和Bézier曲线的重新参数化方法[J].计算机研究与发展,2004,41(6):1016-1021. 被引量:42
  • 8Farin G.Curves and surfaces for CAGD:a practical guide[M].San Francisco:Morgan Kaufmann,2002.
  • 9Lee E T Y,Lucian M L.M(o)bius reparametrizations of rational B-splines[J].Computer Aided Geometric Design,1991,8(3):213-215.
  • 10Piegl L,Tiller W.The NURBS book[M].New York:Springer,1997.

二级参考文献13

  • 1梁锡坤.Bernstein-Bézier类曲线和Bézier曲线的重新参数化方法[J].计算机研究与发展,2004,41(6):1016-1021. 被引量:42
  • 2施法中.反求标准型有理二次Bezier曲线的参数与内权因子[J].计算机辅助设计与图形学学报,1995,7(2):91-95. 被引量:18
  • 3Les Piegl, Wayne Tiller. The NURBS Book. New York:Springer, 1995. 5~34
  • 4Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design. New York: Academic Press, 1988. 33~58
  • 5P Bézier. The Mathematical Basis of the UNISURF CAD System.London: Butterworths, 1986. 11~72
  • 6W Tiller. Rational B-spline for curves and surfaces representation.IEEE CG&A, 1983, 9(4): 61~69
  • 7Farin G. Curvature continuity and offsets for piecewise conics. ACM Trans on graphics, 1989, 8(2): 112~ 121
  • 8施法中.计算机辅助几何设计与非均匀有理B样条.北京:高等教育出版社,2001.115-163(Shi Fazhong. Computer Aided Geometric Design and Non Uniform Rational Basic Spline (in Chinese). Beijing: Higher Educational Press, 2001. 115- 163)
  • 9朱心雄.自由曲线曲面造型技术.北京:科学出版社,2000.66-87(Zhu Xinxiong. Modeling Technology of Free Formed Curves and Surfaces(in Chinese). Beijing: Science Press, 2000. 66-87)
  • 10Farouki R T, Sakkalis T. Real rational curves are not "unit Speed" [J]. Computer Aided Geometric Design,1991, (8): 151-157.

共引文献42

同被引文献54

  • 1梁锡坤.Bernstein-Bézier类曲线和Bézier曲线的重新参数化方法[J].计算机研究与发展,2004,41(6):1016-1021. 被引量:42
  • 2郭凤华,杨兴强.Bézier曲线的一种重新参数化新方法[J].工程图学学报,2006,27(2):108-111. 被引量:5
  • 3郭凤华.参数曲线的最优参数化[J].计算机辅助设计与图形学学报,2007,19(4):464-467. 被引量:10
  • 4刘晓强,唐荣锡.实体造型技术的现状与发展趋势[J].计算机辅助设计与图形学学报,1997,9(3):284-287. 被引量:6
  • 5Floater M S. Derivatives of rational Bezier curves [J]. Computer Aided Geometric Design, 1992, 9(3) : 161-174.
  • 6Saito T, Wang G J, Sederberg T W. Hodographs and normals of rational curves and surfaces [J]. Computer Aided Geometric Design, 1995, 12(4): 417-430.
  • 7Wang G Z, Wang G J. Higher order derivatives of a rational Bezier curve [J]. Graphical Models and Image Processing, 1995, 57(3): 246-253.
  • 8Hermann T. On the derivatives of second and third degree rational Bezier curves [J]. Computer Aided Geometric Design, 1999, 16(3):157-163.
  • 9Kim D S, Jang T, Shin H, et al. Rational Bezier form of hodographs of rational Bezier curves and surfaces [J]. Computer Aided Design, 2001, 33(4) : 321-330.
  • 10Selimovic I. New bounds on the magnitude of the derivative of rational Bezier curves and surfaces [J]. Computer Aided Geometric Design, 2005, 22(4): 321-326.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部