期刊文献+

基于支持向量回归机的油田系统预测方法

Prediction of oilfield systems based on support vector regression
下载PDF
导出
摘要 为克服传统预测方法的局限性,提出一种基于支持向量回归机算法的油田试井系统建模和预测方法.应用原-对偶算法,可解决支持向量回归机中的二次规划问题,而把该支持向量回归机应用于试井压力预测,结果表明:该方法具有较高的建模和预测精度,建模和有验证预测的平均相对误差在1%以内. A new way of modeling and prediction in oil fields based on the SVR is proposed in this paper.And the primal-dual algorithm is used to solve the dual programming in SVR algorithm.Support Vector regression is adopted to predict the pressure of test wells in oil fields.The application example shows that it is highly precise and the above new algorithm is applied to modeling and testing prediction for test well system.The average relative errors of modeling and prediction are within 1%.
作者 高扬 刘严崴
出处 《大庆石油学院学报》 CAS 北大核心 2007年第1期94-96,共3页 Journal of Daqing Petroleum Institute
基金 黑龙江省自然科学基金项目(TF2005-26) 黑龙江省教育厅科研项目(10541014)
关键词 支持向量机 支持向量回归机 原-对偶算法 建模 压力预测 support vector machine support vector regression primal-dual algorithm modeling prediction
  • 相关文献

参考文献5

二级参考文献22

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部