摘要
用模奇数n的4-分圆陪集和生成多项式刻划四元循环码,得到一般四元循环码的对偶码为自正交码的充要性判别准则,将前人关于自正交四元单根循环码和四元BCH码的对偶码为自正交判别准则推广到任意四元循环码,包括四元单根循环码和重根循环码.利用单根循环码与重根循环码关系,确定出所有能由短码长的四元循环码构造的线性量子码。
A method of describing quaternary cyclic codes with 4 - cyclotomic cosets of modulo odd n and generator polynomials is presented. A necessary and sufficient condition under which a quaternary cyclic code containing its dual code is given, thus generalizing the related known results on self- orthogonal simple root cyclic codes and on BCH codes to al quaternary cyclic codes. Using the relation of simple root cyclic codes and repeat root cyclic codes, the linear quantum codes that can be constructed from quaternary cyclic codes of short lengths are determined.
出处
《空军工程大学学报(自然科学版)》
CSCD
北大核心
2007年第1期85-87,共3页
Journal of Air Force Engineering University(Natural Science Edition)
基金
国家自然科学基金资助项目(60573040)
中国博士后基金资助项目(20060391009)
关键词
循环码
自正交码
线性量子码
cyclic codes
self - orthogonal codes
linear quantum codes