期刊文献+

基于支持向量机的氨含量预测模型

Prediction Model of Ammonia Concentration Based on Support Vector Machine
下载PDF
导出
摘要 氨合成反应器出口氨含量与其影响因素间存在较强的非线性关系,为其建模,可预报氨含量,进而指导生产、优化反应器的操作。本文运用具有较强的非线性拟合能力和基于结构风险最小化原则的支持向量机,建立了氨含量的预测模型,验证表明,该模型具有较强的拟合和预测能力。 There was complex nonlinear relation between the ammonia concentration at the exit of the ammonia synthesis reactor and its influencing factors. Founded a model between them, it could predict the ammonia concentration, then guided production and optimize the operational parameters of the reactor. Support vector machine (SVM) was applied to model the ammonia concentration prediction, because it was strong capability of nonlinear expression, and it was favorable general performance based on structural risk minimization principle. The experiment indicated that the mean fitting relative error and mean prediction relative error of the model was all small.
出处 《化工技术与开发》 CAS 2007年第2期51-53,共3页 Technology & Development of Chemical Industry
基金 浙江省衢州市科技局项目(20051044)
关键词 氨含量 支持向量机 预测模型 非线性拟合 ammonia concentration support vector machine prediction model nonlinear fitting
  • 相关文献

参考文献6

二级参考文献13

  • 1刘化章,胡樟能,李小年,李岩英,蒋祖荣.ZA-3型氨合成催化剂研究报告——Ⅰ实验研究[J].浙江工学院学报,1993,29(2):15-23. 被引量:15
  • 2姚佩芳,房鼎业,朱炳辰.各类氨合成催化剂本征反应动力学的比较[J].氮肥设计,1989(2):56-62. 被引量:1
  • 3王树青.生化反应过程模型化及计算机控制.杭州:浙江大学出版社,1998
  • 4Michael L T, Mark A K. Modeling Chemical Processes Using Prior Knowledge and Neural Networks. AIChE Jorunal,1994,40(8):1328
  • 5Shene C, Diez C, Bravo S. Neural Networks for the Prediction of the State of Zymomonas Mobilis CP4 batch fermentations. Computers and Chemical Engineering, 1999,23 (8): 1097
  • 6Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer, 1995
  • 7王博彦,金其荣.发酵有机酸生产与应用手册.北京:中国轻工业出版社,2000
  • 8Lin C J. On the Convergence of the Decomposition Method for Support Vector Machines. IEEE Transactions on Neural Networks,2001,12 (6):1288
  • 9阎平凡,张长水.人工神经网络与模拟退化计算.北京:清华大学出版社,2000
  • 10胡上序,陈德钊.观测数据的分析与处理.杭州:浙江大学出版社,1996

共引文献2287

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部