期刊文献+

基于SVM的脑功能分类与识别方法研究 被引量:8

Classification and recognition of brain function based on support vector machine
下载PDF
导出
摘要 目的探讨SVM分类器用于脑功能识别的可行性、有效性与优越性,为脑电信号处理及功能识别提供一种新的途径和参考。方法对400组实测的正常人在睁眼和闭眼两种状态下的脑电信号,选取四种核函数分别构造四种SVM分类器对上述两种状态下的脑功能进行分类识别,从不同角度深入分析和比较讨论了由四种核函数构造的SVM分类器性能,并提出了脑电信号特征参数从低维到高维的组合变换新方法。结果由RBF核函数构造的SVM分类器最为适合脑功能的分类识别,正识率最高可达96%。结论支持向量机的方法用于脑电信号处理及功能模式识别是可行的、有效的、并初步表现出了优越的性能。 Objective To discuss the feasibility, validity and advantage of using SVM classifier in cerebal function recognition, and to provide a new method of EEG signal processing and function recognition. Methods The performance of the SVM classifiers which was constructed by four kinds of kernel function was compared and discussed in detail from different aspect using the feature parameter of real measured EEG signal. Four hundreds groups of actual normal human's EEG signal in state of eyes-closed and eyes-opened were adopted in our experiment. A novel method for feature parameters transform from low dimensional to high dimensional was put forward. Results The experiment result indicated that the SVM classifier with RBF kernel was suitable to the classification and recognition of EEG signal and the highest ratio of correct recognition reached 96%. Conclusion SVM is feasible, effective and with predominant performance in EEG signal processing and brain function pattern recognition.
出处 《中国医学影像技术》 CSCD 北大核心 2007年第1期125-128,共4页 Chinese Journal of Medical Imaging Technology
基金 国家自然科学基金(30470459) 西工大科技创新基金(M450212)资助。
关键词 支持向量机 脑功能 核函数分类器 正识率 Support vector machine Brain function Kernel function classifier Correct recognition ratio
  • 相关文献

参考文献9

  • 1Cortes C,Vapnik VN.Support vector networks[J].Machine Learning,1995,20(3):273-297.
  • 2Mitchel TM.机器学习[M].北京:机械工业出版社,2004:9.
  • 3Marx E,Deutschlunder A.Eyes open and eyes closed as rest conditions:impact on brain activation patterns[J].Neuroimage,2004,21 (4):1818-1824.
  • 4白树林,谢松云,张玉梅,杨金孝.基于灰色系统理论的脑电特征提取[J].贵州工业大学学报(自然科学版),2005,34(6):55-59. 被引量:6
  • 5Girolami M.Mercer kernel based clustering in feature space[J].IEEE Trans Neural Networks,2002,13(3):780-784.
  • 6Müller KR,Mika S,Ratsch G,et al.An introduction to kernelbased learning algorithms[J].IEEE Transactions Neural Networks,2001,12(2):181-201.
  • 7Casasent D,Wang YC.Automatic target recognition using new support vector machine[C].Proceedings of International Joint Conference on Neural Networks,Montreal,Canada,2005.
  • 8边肇祺 张学工.模式识别[M].北京:清华大学出版社,2004..
  • 9Moosmann M,Ritter P,Krastel I,et al.Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy[J].Neuroimage,2003,20(1):145-158.

二级参考文献1

  • 1Matthias Moosmann,Petra Ritter,Ina Krastel,et al.Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy[J].NeuroImage,2003,20:145 - 158.

共引文献40

同被引文献57

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部