摘要
Compressible miscible displacement of one fluid by another in porous media is modelled by a nonlinear parabolic system. A finite element procedure is introduced to approximate the concentration of one fluid and the pressure of the mixture. The concentration is treated by a Galerkin method while the pressure is treated by a parabolic mixed finite element method. The effect of dispersion, which is neglected in [1], is considered. Optimal order estimates in L2 are derived for the errors in the approximate solutions.
Compressible miscible displacement of one fluid by another in porous media is modelled by a nonlinear parabolic system. A finite element procedure is introduced to approximate the concentration of one fluid and the pressure of the mixture. The concentration is treated by a Galerkin method while the pressure is treated by a parabolic mixed finite element method. The effect of dispersion, which is neglected in is considered. Optimal order estimates in L^2 are derived for the errors in the approximate solutions.
关键词
互溶驱替
有限元分析
流体力学
离差
Compressible miscible displacement
mixed finite element method
dispersion
error estimate.