摘要
给出了线性随机延迟微分方程解析解的几个重要不等式的详细证明,进而讨论了半隐式Euler方法的局部收敛性,应用Ito积分的性质、Doob不等式、Hlder不等式证明了在均方意义下半隐式Euler方法的局部收敛阶为1.
The detail proof of some important inequalities is given for exact solution of a linear stochastic differential delay equation. The local Convergence of the semi - implicit Euler method is discussed accordingly. By applying the properties of the ho stochastic integral, the Doob's inequality and the Hoelder inequality, it is shown that the local convergent order of the semi - implicit Euler method is 1 in the mean - square sense.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2007年第1期97-99,104,共4页
Journal of Natural Science of Heilongjiang University
基金
国家自然科学基金资助项目(10271036)
东南大学913科研基金资助项目(9207012197)
关键词
随机延迟微分方程
半隐式EULER方法
局部收敛性
stochastic differential delay equations
semi -impticit Euler method
local convergence