期刊文献+

线性随机延迟微分方程半隐式Euler方法的局部收敛性证明 被引量:3

The proof of the local convergence of the semi-implicit Euler method for a linear stochastic differential delay equation
下载PDF
导出
摘要 给出了线性随机延迟微分方程解析解的几个重要不等式的详细证明,进而讨论了半隐式Euler方法的局部收敛性,应用Ito积分的性质、Doob不等式、Hlder不等式证明了在均方意义下半隐式Euler方法的局部收敛阶为1. The detail proof of some important inequalities is given for exact solution of a linear stochastic differential delay equation. The local Convergence of the semi - implicit Euler method is discussed accordingly. By applying the properties of the ho stochastic integral, the Doob's inequality and the Hoelder inequality, it is shown that the local convergent order of the semi - implicit Euler method is 1 in the mean - square sense.
作者 曹婉容
机构地区 东南大学数学系
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2007年第1期97-99,104,共4页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(10271036) 东南大学913科研基金资助项目(9207012197)
关键词 随机延迟微分方程 半隐式EULER方法 局部收敛性 stochastic differential delay equations semi -impticit Euler method local convergence
  • 相关文献

参考文献5

  • 1MAO X R,SABANIS S.Numerical solutions of stochastic differential delay equations under local Lipschitz condition[J].J Comput Appl Math,2003,151:215 -227.
  • 2HU Y,MOHAMMED S E A,YAN F.Discrete-time approximations of stochastic delay equations:the Milstein scheme[J].Ann Probab,2004,32:265-314.
  • 3LIU M Z,CAO W R,FAN Z C.Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation[J].J Comput Appl Math,2004,170:255 -268.
  • 4BAKER C T H,BUCKWAR E.Numerical analysis of stochastic delay differential equations[J].J Comput Appl Math,2000,125:297 -307.
  • 5MAO X R.Exponential stability of stochastic differential equations[M].New York:Marcel Dekker,1994.

同被引文献31

  • 1朱霞,李建国,李宏智,姜珊珊.随机微分方程Milstein方法的稳定性[J].华中科技大学学报(自然科学版),2003,31(3):111-113. 被引量:12
  • 2朱霞.求解随机微分方程的欧拉法的收敛性[J].华中科技大学学报(自然科学版),2003,31(3):114-116. 被引量:17
  • 3郭小林.随机微分方程欧拉格式算法分析[J].大学数学,2006,22(3):94-99. 被引量:4
  • 4朱霞,阮立志.求解随机微分方程的两种方法的稳定性分析[J].中南民族大学学报(自然科学版),2006,25(2):98-100. 被引量:4
  • 5Maruyama G. Continuous Markov processes and stochastic equations[J]. Math Palermo, 1955,4 : 48-90.
  • 6Kuchler U, Platen E. Strong discrete time approximation of stochastic differential equations with time delay [J]. Math Comput Simulation, 2000,54 : 189-205.
  • 7Kuchler U, Platen E. Weak discrete time approximation of stochastic differential equations with time delay [J]. Mathematics and Computers in Simulation, 2002, 59 (6) :497-507.
  • 8Mao Xuerong, Sabanis S. Numerical solutions of stochastic differential delay equations under local Lipschitz condition [J]. Journal of Computational and Applied Mathematics, 2003,151: 215-227.
  • 9Liu Mingzhu, Cao Wanrong, Fan Zhencheng. Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation [J]. Journal of Computational and Applied Mathematics, 2004,170 : 255-268.
  • 10Burrage K, Burrage P M. High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations[J]. Appl Numer Math, 1996,22: 81 - 101.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部