期刊文献+

对称矩阵空间上保逆线性映射 被引量:1

Linear maps preserving inverses of matrices on symmetric matrix space
下载PDF
导出
摘要 设F是特征不为2且元素个数大于3的域,n和m是正整数,令Sn(F)和Mn(F)分别是F上n×n对称矩阵空间和全矩阵空间,GLm(F)为F上m阶一般线性群,设f是从Sn(F)到Mm(F)上的线性映射,若f满足f(X)-1=f(X-1),X∈Sn(F)∩GLn(C),称f为保逆线性映射.刻画了从Sn(F)到Mm(F)以及从Sn(F)到Sm(F)上保逆线性映射. Suppose F is a field of characteristic not 2 and | F| 〉 3, m and n are positive integers, Let Sn (F) and Mm, (F) be the vector spaces of all n×n symmetric matrices and all m×m full matrices over F, respectively. Let GLn (F) be the set of all n x n nonsingular matrices. A linear map f from Sn (F) to Mm (F) is said to inverse - preserving if f (X)^-1 =f(X^-1) for every X∈Sn (F) ∩GLn (F). Linear maps preserving inverses of matrices from Sn(F) to Mm(F) ( respectively Sm(F) ) are characterized.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2007年第1期130-132,共3页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(10271021)
关键词 保逆线性映射 逆矩阵 对称矩阵空间 field linear map preserving inverse inverse of matrix space of symmetric matrices
  • 相关文献

参考文献6

二级参考文献13

  • 1张显 曹重光.保不变量的矩阵加群同态[M].哈尔滨:哈尔滨出版社,2001..
  • 2WANG Lu-qun, YUAN Gui-fang. Linear maps preserving idempotence on full matrix modules over commutative rings[J].Acta Math Sinica, 1992, 35(1): 85-89.
  • 3LILT Shao-wu. Linear maps preserving idempotence on matrix modules over principal ideal domains[J]. Lin Alg Appl, 1997,258: 219-231.
  • 4CAO Chong-guang, ZHANG Xian. Additive Operators Preserving Idempotent Matrices Over Fields and Applications[J]. Lin Alg Appl, 1996, 248: 327-338.
  • 5CIN-HOR CHAN, MING-HUAT LIM, KOK-KEONG TAN. Linear freserrers on matrices[J]. Lin Alg Appl, 1987, 93: 67-80.
  • 6张显 曹重光.保不变量的矩阵加群同态[M].哈尔滨:哈尔滨出版社,2001..
  • 7CAO Chong - guang, ZHANG Xian. Additive operators preserving idempotent matrices over field's and applications [ J ]. Lin Alg Appl, 1996,248:327 - 338.
  • 8冯立新,曹重光.保逆矩阵的加法算子[J].黑龙江大学自然科学学报,1998,15(3):3-6. 被引量:4
  • 9曹重光.某些环上矩阵模的保幂等线性映射[J].黑龙江大学自然科学学报,1999,16(1):1-4. 被引量:19
  • 10曹重光.局部环上矩阵模的保幂等自同态[J].黑龙江大学自然科学学报,1989,6(2):1-3. 被引量:17

共引文献39

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部