摘要
巡天扫描是天文卫星进行天体观测的基础,但是使用传统方法很难实现全天球覆盖,并且会遇到能源输出瓶颈。因此,针对天文卫星巡天扫描所遇到的问题,提出了使用多目标遗传算法对卫星飞行任务进行智能规划的模型。该模型通过调整飞行任务很好解决了能源输出的问题,与仅依靠被动的分段式扫描方法相比,还大大缩短了巡天扫描的时间。从仿真结果来看,该模型是十分有效的。
Scanning the celestial sphere provides a basement to satellites' celestial bodies observation. But there are two problems, which are difficult to solve: one is how to scan the whole celestial sphere; and the other is that power output is not enough sometimes. An intelligent model using multi-objective genetic algorithm was brought forward which could scheme the satellite's flight mission. Compared with the passive zoning method, this model has two advantages: the power output is increased through programming the satellite's flight mission and the time of scanning the celestial sphere is decreased. Simulation testing shows that this model is effective.
出处
《系统仿真学报》
EI
CAS
CSCD
北大核心
2007年第3期654-656,共3页
Journal of System Simulation
基金
国家重点基础研究发展规划(973)项目(G2000077605)
关键词
巡天扫描
飞行任务
智能规划
多目标遗传算法
天文卫星
celestial sphere scan
flight mission
intelligent model
Multi-Objective genetic algorithms
astronomical satellite