期刊文献+

基于最大间距准则(MMC)新的有效特征提取方法 被引量:5

New and Efficient Feature Extraction Methods Based on Maximum Margin Criterion
下载PDF
导出
摘要 基于最大间距准则(Maximum Margin Criterion,MMC)下,提出一组具有标准正交性的最佳鉴别矢量的计算方法和一组具有统计不相关性的最佳鉴别矢量的计算方法。这种方法的目的是寻求一组最佳鉴别矢量既要使投影变换后的特征空间的类间散度最大,而类内散度最小;又要减小最佳鉴别矢量间的统计相关性。与原MMC特征提取方法相比,新的特征提取方法降低了甚至消除了最佳鉴别矢量间的统计相关性,提高了识别率。通过分别在ORL人脸库和NUST603人脸库上实验结果表明提出的具有统计不相关性的MMC特征提取方法在识别率方面整体上好于原MMC特征提取方法和常用的主成分分析(PCA)法。另外,揭示了MMC准则特征提取与Fisher准则特征提取的内在关系。 Based on the maximum margin criterion (MMC), a new algorithm of orthogonal optimal discriminant vectors and a new algorithm of statistically uncorrelated optimal discriminant vectors for feature extraction were proposed. The purpose of the maximum margin criterion is to maximize the inter-class scatter while simultaneously minimizing the intra-class scatter after the projection. Compared with original MMC method and principal component analysis (PCA) method, the proposed methods are better in terms of reducing or eliminating the statistically correlation between features and improving recognition rate. The experimental results on Olivetti Research Laboratory (ORL) face database and NUST603 face database show that the new feature extraction method of statistically uncorrelated maximum margin criterion (SUMMC) are better in terms of recognition rate and stability. Besides, the relations between maximum margin criterion and Fisher criterion for feature extraction were revealed.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第5期1061-1066,共6页 Journal of System Simulation
基金 国家自然科学基金资助项目(60472060) 江苏省高校自然科学基金项目(06KJD520085) 南京林业大学人才基金资助项目(2002-10)
关键词 最大间距准则 最佳鉴别矢量 统计不相关 特征提取 人脸识别 maximum margin criterion optimal discriminant vectors statistically uncorrelation feature extraction face recognition
  • 相关文献

参考文献2

二级参考文献9

  • 1丁学仁 蔡庙可.工程中的矩阵理论[M].天津:天津大学出版社,1995.115-118.
  • 2A Pentland. Looking at people: Sensing for ubiquitous and wearable computing. IEEE Trans on Pattern Anal Machine Intell, 2000, 22(1): 107~119
  • 3Peter N Belhumeur, Joao P Hespanha, David J Kriengman. Eigenfaces vs Fisherfaces: Recognition using class specific linear projection. IEEE Trans on Pattern Anal Machine Intell, 1997, 19(7): 711~720
  • 4Chengjun Liu, Harry Wechsler. A shape-*$and texture-based enhanced Fisher classifier for face recognition. IEEE Trans on Image Processing, 2001, 10(4): 598~608
  • 5Jian Yang, J Y Yang. Optimal FLD algorithm for facial feature extraction. SPIE Proc Intelligent Robots and Computer Vision XX: Algorithms, Techniques, and Active Vision. 2001
  • 6Li-Fen Chen, H-Y Mark Liao, M-T Ko et al. A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognition, 2000, 32: 317~324
  • 7Zhong Jin, J Y Yang, Z S Hu et al. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001, 33(7): 1405~1416
  • 8Liu K, Cheng Y-Q, Yang J-Y et al. Algebraic feature extraction for image recognition based on an optimal discriminant criterion. Pattern Recognition, 1993, 26(6): 903~911
  • 9杨健,杨静宇,金忠.最优鉴别特征的抽取及图像识别[J].计算机研究与发展,2001,38(11):1331-1336. 被引量:21

共引文献86

同被引文献40

  • 1王阳萍,朱正平,孙传庆.一种基于改进径向基神经网络的人脸图像识别方法[J].甘肃科学学报,2006,18(2):62-65. 被引量:5
  • 2孙涛,谷士文,费耀平.基于PCA算法的人脸识别方法研究比较[J].现代电子技术,2007,30(1):112-114. 被引量:14
  • 3祝磊,朱善安.人脸识别的一种新的特征提取方法[J].光电工程,2007,34(6):122-125. 被引量:7
  • 4Yu Hua,Yang Jie.Direct LDA Algorithm for High Dimensional Data with Application to Face Recognition[J].Pattern Recognition,2001,34(10):2067-2070.
  • 5Li Haifeng,Jiang Tao,Zhang Keshu.Efficient and Robust Feature Extraction by Maximum Margin Criterion[C]//Proceedings of Advances in Neural Information Processing Systems.[S.1.]:MIT Press,2004:97-104.
  • 6He Xiaofei,Niyogi P.Locality Preserving Projections[C]//Proc.of Conf.on Neural Information Processing System.Vancouver,Canada:MIT Press,2003:153-160.
  • 7HE X F,YAN S C,HU Y X,et al.Face Recognition Using Laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):328-340.
  • 8Yu Hua, Yang Jie. A Direct LDA Algorithm for High-Dimensional Data with Application to Face Recognition. Pattern Recognition, 2001, 34(10) : 2067 -2070.
  • 9Nelhumeur P N, Hespanha J P, Kriegmen D J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 711 -720.
  • 10Li Haifeng, Jiang Tao, Zhang Keshu. Efficient and Robust Feature Extraction by Maximum Margin Criterion. IEEE Trans on Neural Networks, 2006, 17(1) : 157 -165.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部