期刊文献+

任意秩有限总体中无偏预测和估计的构造关系

Unbiased prediction and its construction relationship to unbiased estimation in finite populations with arbitrary rank
下载PDF
导出
摘要 研究了有限总体均值向量的无偏估计和线性可预测变量的无偏预测之间的关系,利用分块矩阵广义逆直接对加权风险函数进行分解,提出了一种由均值向量的无偏估计来构造无偏预测的新方法,并找到了它们之间的构造关系.特别地,线性可预测变量的最优线性无偏预测(BLUP)可由均值向量的最佳线性无偏估计(BLUE)惟一地表示(有关惟一性在几乎处处意义下理解). The unbiased predictor of linear predictable variable and its relationship to unbiased estimator of mean vector in finite populations are investigated. Based on generalized inverse of partitioned matrix in weighted loss function, unbiased predictors can be constructed by unbiased estimators of mean vector. Furthermore, this paper derives the construction relations between unbiased prediction and unbiased estimation. Especially, the BLUP of linear predictable variable can be formulated by BLUE of mean vector,which is unique in the sense "almost everywhere"
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2007年第1期59-66,共8页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(10101006)
关键词 有限总体 无偏估计 无偏预测 构造关系 finite population unbiased estimator unbiased predictor construction relation
  • 相关文献

参考文献10

  • 1Pereira C A B,Rodrigues J.Robust linear prediction in finite populations[J].International Statistical Review,1983,51:293-300.
  • 2Bolfarine H,Pereira C A B,Rodrigues J.Linear prediction in finite populations—a Bayesian perspec-tive[J].Sankhya (Series B),1987,49:23-35.
  • 3Bolfarine H,Rodrigues J.On the simple projection predictor in finite populations[J].Austral J Statist,1988,30..338-341.
  • 4Bolfarine H,Zacks S.Bayes and minimax prediction in finite populations[J].Journal of Statistical Planning and Inference,1991,28:139-151.
  • 5Bolfarine H,Zacks S,Elian S N,et al.Optimal prediction of the finite population regression coefficient[J].Sankhya (Series B),1994,54:1-10.
  • 6卞国瑞.关于多元线性模型未来观察值的预测[J].数学年刊:A辑,1983,4(2):229-234.
  • 7喻胜华,何灿芝.有限总体中的最优预测[J].高校应用数学学报(A辑),2000,15A(2):199-205. 被引量:14
  • 8喻胜华,何灿芝.任意秩多元线性模型中的最优预测[J].应用数学学报,2001,24(2):227-235. 被引量:35
  • 9Rao C R.Linear Statistical Inference and Its Applications[M].2nd ed,New York:John Wiley & Sons,1973.
  • 10Schmidt K D.Prediction in the linear model:A direct approach[J].Metrika,1998,48:141-147.

二级参考文献12

  • 11,Pereira,C.A.B.and Rodrigues,J.,Robust linear prediction in finite populations,Internat.Statist.Rev.,1983,51:293~300.
  • 22,Bolfarine,H.,Zacks,S.,Elian,S.N., et al.,Optimal prediction of the finite population regression coefficient,Sankhy Ser.B,1994,56:1~10.
  • 33,Bolfarine,H.and Rodrigues,J.,On the simple projection predictor in finite populations,Austral.J.Statist.,1988,30:338~341.
  • 44,Bolfarine,H.,Zacks,S.,Bayes and minimax prediction in finite populations,J.Statist.Plann. Inference,1991,28:139~151.
  • 55,Bolfarine,H.,Pereira,C.A.B. and Rodrigues,J.,Robust linear prediction in finite populations-A Bayesian perspective,Sankhy Ser.B,1987,49:23~35.
  • 66,Rodrigues,J.,Bolfarine,H.and Rogakto,A.,A general theory of prediction in finite populations,Internat.Statist.Rev.,1985,53:239~254.
  • 7[1]Pereira C A B, Rodrigues J. Robust Linear Prediction in Finite Populations. International Statistical Review, 1983, 51:293-300
  • 8[2]Bolfarine H, Pereira C A B, Rodrigues J. Robust Linear Prediction in Finite Populations-A Bayesian Perspective. Sankhya-(Series B), 1987, 49:23-35
  • 9[3]Bolfarine H, Rodrigues J. On the Simple Projection Predictor in Finite Populations. Aust. Jour.Statist., 1988, 30:338-341
  • 10[4]Bolfarine H, Zacks S. Bayes and Minimax Prediction in Finite Populations. Jour. Statistical Planning and Inference, 1991, 28:139-151

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部