期刊文献+

基于ISA-ECI参数的肽高效液相色谱保留时间支持向量机预测模型 被引量:2

Prediction Model of Retention Time of Peptides in High-Performance Liquid Chromatography by Support Vector Machine Based on ISA-ECI Parameters
下载PDF
导出
摘要 基于氨基酸描述子ISA-ECI,利用加和法构建了101个混杂肽高效液相色谱保留时间的支持向量回归(SVR)预测模型(ε=0.001、σ=4和C=100),并与多元线性回归和投影寻踪回归作了比较研究,结果表明SVR要好于其它方法,SVR方法对数据集留一法交叉检验和拟合的预测复相关系数分别为0.8822和0.9530,其预测结果与实验值一致.且提出了一个简单的方法并指出保留时间与描述肽的分子结构信息的ISA-ECI参数存在着非线性关系. Based on amino acid descriptors(ISA-ECI) and addition method, a prediction model of high-performance liquid chromatography retention time of 101 promiscuous peptides by support vectors regression (SVR) has been set up. The prediction result of the SVM model (ε =0. 001, σ = 4 and C = 100) is much better than that obtained by multiple linear regression(MLR) and project pursuit regression(PPR) methods. The prediction correlation coefficient is 0.882 2 by leave-one-out cross validation. The prediction correlation coefficient is 0. 953 in fitting calculation. The prediction results are in agreement with the experimental values. This paper provides a simple and effective method for predicting to the retention time of peptidcs. Moreover, it also indicates the nonlinear relation between the retention time of pcptidcs and their structural descriptors(ISA-ECI).
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第1期94-98,共5页 Journal of Sichuan Normal University(Natural Science)
基金 四川农业大学生命理学院创新基金的资助.
关键词 定量结构-保留关系 支持向量机 ISA-ECI参数 Pepfide Quantitative structure-retention relationship Support vector machine ISA-ECI parameter
  • 相关文献

参考文献14

  • 1Meek J L.Proc Natl Acad Sci,1980,77:1632-1636.
  • 2Casal V,Martin-Alvarez P J,Herraiz T.Anal Chim Acta,1996,326:77-84.
  • 3Mant C T,Zhou N E,Hodges R S.Correlation of protein retention times in reversed-phase chromatography with polypeptide chain length and hydrophobicity[J].J Chromatogr,1989,476:363-375.
  • 4Roman K,Tomasz B C,Anna C,et al.Prediction of high-performance liquid chromatography retention of peptides with the use of quantitative structure-retention relationships[J].Proteomics,2005(5):409-415.
  • 5Collantes E R,Dunn W J.Ⅲ Amino acids side chain descriptors for quantitative struc ture-activity relationship studies of peptide analogue[J].J Med Chem,1995,38:2705-2713.
  • 6Alex J S,Bernhrd S.A tutorial on support vector regression[J].Statistics and Computing,2004,14:199-222.
  • 7[美]Vladimir N V.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2004.
  • 8李梦龙,刘军红,黎金明,陆敏春,王克龙.基于支持向量机的炭黑工艺建模[J].应用基础与工程科学学报,2005,13(1):51-57. 被引量:6
  • 9姜微,罗晓虹,姜林,印家健,李梦龙.IEA-PPR用于降水的pH值预测模型构建[J].化学研究与应用,2005,17(4):545-547. 被引量:7
  • 10Burbidge R,Trotter M,Buxton B,et al.Computers and Chemistry,2001,26(1):5-14.

二级参考文献24

  • 1姜林,李梦龙.基于免疫算法优化的投影寻踪水质评价模型[J].四川大学学报(自然科学版),2004,41(4):816-819. 被引量:11
  • 2吕红,冯树声.用灰色系统理论对大同市大气降水pH值进行预测分析[J].环境污染与防治,1994,16(4):22-23. 被引量:4
  • 3Janik M. Production of industrial carbon black from tar raw materials in Czechoslovakia [ J ]. Fuel and Energy Abstract,2001,42( 1 ) :24.
  • 4俞沲勤.化学计量学导论[M].湖南:湖南教育出版社,1991.345-346.
  • 5VapnieVN.统计学习理论[M].北京:电子工业出版社,2004.365-373.
  • 6Haykin S. Neural networks: a comprehensive foundation[ M]. New Jersey: Prentice-Hall, 1999:318-347.
  • 7Thissen U, Van Brakel R, De Weijer A P, et al. Using support vector machines for time series prediction [J].Chemometrics and Intelligent Laboratory Systems, 2003, 69( 1 ):35-49.
  • 8Tay F E H, Cao L J. Modified support vector machines in financial time series forecasting[ J]. Neurocomputing,2002, 48(1-4) :847-861.
  • 9Thissen U, Pepers M, Ustun B, et al. Comparing support vector machines to PLS for spectral regression applications[ J ]. Chemometrics and Intelligent Laboratory Systems,2004, 73 (2) : 169-179.
  • 10Svozil D, Kvasnieka V, Pospiehal J. Introduction to multi-layer feed-forward neural networks [ J ]. Chemometrics and Intelligent Laboratory Systems, 1997, 39 ( 1 ) :43-62.

共引文献11

同被引文献26

  • 1胡国胜,钱玲,张国红.支持向量机的多分类算法[J].系统工程与电子技术,2006,28(1):127-132. 被引量:33
  • 2张博锋,苏金树,徐昕.一种新的多类SVM方法及其在文本分类中的应用[J].广西师范大学学报(自然科学版),2006,24(4):95-98. 被引量:9
  • 3Schimpf M E,Caldwell K,Giddings J C.Field-Flow Fractionation Handbook[M].New York:Wiley-Interscience,2000:3-10.
  • 4Beckett R,Nicholson G,Hart B T,et al.Separation and size characterization of colloidal particles in river water by sedimentation field-flow fractionation[J].Water Research,1988,22(12):1535-1545.
  • 5Messaud F A,Sanderson R D,Runyon J R,et al.An overview on field-flow fractionation techniques and their applications in the separation and characterization of polymers[J].Progress in Polymer Science,2009,34(4):351-368.
  • 6Giddings J C.Unified Separation Science[M].New York:Wiley,1991.
  • 7GiddingsJC,Yang F J F,Myers M N.Sedimentation field-flow fractionation[J].Anal Chem,1974,46(13):1917-1924.
  • 8Hovingh M E,Thompson G H,Giddings J C.Column parameters in thermal field-flow fractionation[J].Anal Chem,1970,42(2):195-203.
  • 9Giddings J C,Yang F J F,Myers M N.Flow-field-flow fractionation:a versatile new separation method[J].Science,1976,193:1244-1245.
  • 10Giddings J C,Yang F J,Myers M N.Theoretical and experimental characterization of flow field-flow fractionation[J].Anal Chem,1976,48(8):1126-1132.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部