期刊文献+

基于小波过程神经网络的飞机发动机状态监视 被引量:18

Condition Monitoring of Aeroengine Based on Wavelet Process Neural Networks
下载PDF
导出
摘要 针对飞机发动机状态监视问题,提出了小波过程神经网络模型。其隐层和输出层为过程神经元,隐层激活函数采用小波函数。该模型结合了过程神经网络可以处理连续输入信号的特点及小波变换良好的时频局域化性质,有更强的学习能力和更高的预测精度。文中给出了相应的学习算法,并以飞机发动机状态监视中排气温度裕度的预测为例,分别利用3层前向过程神经网络和小波过程神经网络进行预测。结果表明,小波过程神经网络结构更简单,收敛速度更快,优于过程神经网络,因而为飞机发动机状态监视提供了一种有效的方法。 Aiming at the problem of aeroengine condition monitoring, a wavelet process neural network (WPNN) model is proposed. Its hidden layer and output layer are composed of process neuron and the hidden layer function consists of wavelet function. The network has not only the capability to deal with the continuous input signals, but also the time-frequency local property of the wavelet analysis. The learning ability of WPNN is better and the predictive precision is higher. The corresponding learning algorithm is given and the network is compared with three layers feedforward process neural network (PNN) by predicting the exhaust gas temperature (EGT). The result exhibits good convergence and simple architecture of the network. The prediction capability is superior to PNN. This provides an effective way for the problem of aeroengine condition monitoring.
作者 钟诗胜 李洋
出处 《航空学报》 EI CAS CSCD 北大核心 2007年第1期68-71,共4页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(60373102 60572174) 黑龙江国际合作项目基金(WH054A01)
关键词 过程神经元 小波过程神经网络 学习算法 飞机发动机状态监视 process neuron wavelet process neural network learning algorithm condition monitoring of aeroengine
  • 相关文献

参考文献10

二级参考文献53

  • 1许少华,何新贵.基于函数正交基展开的过程神经网络学习算法[J].计算机学报,2004,27(5):645-650. 被引量:73
  • 2何明一.双并联前向神经网络及其在飞行故障检测仿真研究中的应用[J].航空学报,1994,15(7):877-881. 被引量:4
  • 3刘晓鸿,戴汝为.线性阈值单元神经元网络的图灵等价性[J].计算机学报,1995,18(6):438-442. 被引量:5
  • 4[1]ZHANG Q H,BENVENISTE A. Wavelet Networks[J].IEEE Transactions on Neural Networks,1992,3(6):889~898.
  • 5[2]ZHANG J.MEMBER,et al. Wavelet neural networks for function learning[J] .IEEE Transactions on Signal Processing.1995,43(6):1485-1497.
  • 6[3]ZHANG Q H. Using wavelet network in nonparametric estimation[J]. IEEE Transactions on Neural Networks.1997,8(2):227-236.
  • 7[4]JIAO L C,PAN J,FANG Y W.Multiwavelet neural network and its approximation properties[J]. IEEE Transactions on Neural Networks,2001,12(5):1060-1066.
  • 8[5]CHUI C K,et al.Wavelets. A theory and functional applications[M]. Boston: Academic Press,1992.
  • 9[6]MALLAT S. Multiresolution approximation and wavelet orthonormal bases of L2(R)[J].Trans. Amer.Math. Soc.,1989,315:69-87.
  • 10[7]MALLAT S. A theory of multiresoltuion signal decomposition: the wavelet representation[J].IEEE Trans. PAMI,1989,11:674-693.

共引文献232

同被引文献180

引证文献18

二级引证文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部