期刊文献+

非参数的广义转换异方差模型(英文) 被引量:2

Modeling risk using nonparametric generalized transformed heteroscedasticity models
下载PDF
导出
摘要 在风险管理中,费用的平均值E[Y|X]是一个关键参数.预测平均费用的主要困难在于费用数据是严重偏态且异方差.目前常用的方法有转换模型及广义线性模型方法,这两个方法独立被研究,没有任何交叉,它们部分地克服了数据的偏态性及异方差性质.本文提出了一个新的非参数模型,它不要求给定转换函数、联系函数、方差函数及误差分布函数.现有的转换模型及广义线性模型都只是这个模型的特例,该模型可以在一个相当广泛的范围内提供一个最好的选择.更重要的是本文用一个非常简单的方法估计感兴趣的参数,估计过程中不涉及未知的转换函数、联系函数、方差函数及误差分布函数,因此估计的有效性将被极大提高.理论研究显示该估计是渐进正态的.模拟的数据研究显示估计有很好的小样本举止. In this paper we develop a new non-parametric generalized transformation heteroscedasticity regression model to predict the expected value of an outcome of a patient with given covariates, E [ Y | X ], when the distribution of the outcome is highly skewed with a heteroscedastic variance. In the new model, we allow the variance function, the link function, the transformation function and the error distribution function, all to be unknown. The existing GLM and the transformation models are just special cases of the new model, the proposed model can provide a best choice in a much broader class of models than the combination of the existing models. Based on the model, we proposed a method to estimate E [ Y | X ] and the regression parameters. Unlike the traditional method, we directly estimate E [ Y | X ] and the regression parameters without involving the variance function, the link function, the transformation function and the error distribution function, as a result, the efficiency of the estimators will be improved. Our simulations show that the proposed nonparametric method is robust with limited loss of efficiency. Finally, the proposed estimators for regression parameters and E [ Y | X ] are asymptotically normal with simple variance estimator for E [ Y | X ].
作者 林华珍
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第1期203-205,共3页 Journal of Sichuan University(Natural Science Edition)
关键词 广义线性模型 变换模型 异差 偏态数据 非参数方法 generalized linear model, transformation model, skewed data, heteroscedastic variance, nonparametric method
  • 相关文献

参考文献18

  • 1Duan N. Smearing estimate: a nonparametric retransformationmethod [J]. Journal of the American Statistical Association, 1983,78: 605.
  • 2Manning W G. The logged dependent variable, heteroscedasticity, and the retransformation [J]. Journal of Health Economics, 1998,17:283.
  • 3Mullahy J. Much ado about two: reconsidering retransformation and tile two-part model itl health econometrics[J]. Journal of Health Economics, 1998,17:247.
  • 4Blough D K, Madden C W, Hombrook M C. Modeling risk using gener-alized linear models [J]. Journal of Health Economics, 1999,18:153.
  • 5Manning W G, Basu A, Mullahy J. Generalized modelingapproaches to risk adjustment of skewed outcomes data[J]. Journal of Health Economics,2005,24:465.
  • 6Buntin M B, Zaslavsky A M. Too nmch ado about two-part models and transformation? Comparing methods of modeling medicare expenditures [J]. Journal of Health Economics, 2004,23: 525.
  • 7Manning W G, Mullahy J. Estimating log models: to transform or not to transform? [J]. Journal of Health Econornics, 2001,20 : 461.
  • 8Basu A, Rathouz P J. Estimating marginal and incremental effects on health outcomes using flexible link and variance function models [J]. Biostatistics, 2005,6: 93.
  • 9Chiou J M, Muller H. Quasi-likelihood regression withunknown link and variance fimctions [J]. JASA, 1998,93:1376.
  • 10Zhou X H, Melfi A, Hut S L. Methods for comparison of cost data [J]. Annals of Internal Medicine, 1997,127 : 752.

同被引文献36

  • 1鲁万波,李竹渝.波动性的非参数局部多项式估计[J].四川大学学报(自然科学版),2006,43(2):243-248. 被引量:4
  • 2Black F. Studies of stock market volatility changes [C]. Proceedings of the American Statistical Association, Business and Economic Statistics Section, 1976 : 177.
  • 3Bollerslev T. Generalized autoregressive conditional heteroscedastieity [J ]. Journal of Econometrics, 1986, 31.. 307.
  • 4Engle R F. Autoregressive conditional heteroseedastieity with estimates of the variance of United Kingdom inflation[J]. Econometrica, 1982, 50, 987.
  • 5Bollerslev T. A conditional heteroskedastic time series model for speculative price and rate of return [J]. Review of Economic and Statistics, 1987, 9:542.
  • 6Nelson D. Conditional heteroskedasticity in asset returns: a new approach [J]. Econometrica, 1991, 59 (2) .. 347.
  • 7Liu S M, Brorsen B W. Maximum likelihood estimation of a GARCH-stable model[J]. Journal of Applied Econometrics, 1995, 10(3) : 273.
  • 8Hansen B E. Autoregressive conditional density estimation [J]. International Economic Review, 1994, 35 : 705.
  • 9Wang K L, Fawson C, Barrett C B, etal. A flexible parametric GARCH model with an application to exchange rates [J]. Journal of Applied Econometrics, 2001, 16(4): 521.
  • 10Haas M, Mittnik S, Paolella M S. Mixed normal conditional heteroskedasticity [J]. Journal of Finan- cial Econometrics, 2004, 2(2): 211.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部