摘要
本文在建立适应度函数、选择编码方案、确定遗传操作、选取控制参数的基础上,研究了缓释微囊神经网络模型的遗传算法优化。得到的最佳工艺参数为海藻酸钠与红景天苷质量比为2,海藻酸钠浓度为3%,壳聚糖浓度为0.5%,氯化钙浓度为1%,pH6.35,该工艺参数下载药量、包埋率和决定系数的加权和明显大于试验的结果,比最好的大14%;且最佳工艺参数下目标的预测值和试验值基本相符,可以满足实际需要。遗传算法用于缓释微囊神经网络模型的工艺参数寻优是可行的。
The artificial neural network (ANN)model for Salidroside microcapsules was op optimized by using genetic algorithm (GA) in the light of establishing fitness function, selecting coding method and determining genetic parameters. The highest performance, 14% greater than the biggest in experiments, is obtained when the ratio of alginate weight to Salidroside weight is 2, alginate concentration 3%, chitosan concentration 0.5%, calcium chloride concentration 1% and pH value 6.35. It is a practical method to optimize the ANN model by using GA.
出处
《食品科学》
EI
CAS
CSCD
北大核心
2007年第3期70-72,共3页
Food Science
关键词
遗传算法
神经网络
微胶囊
优化
genetic algorithm(GA)
artificial neural network(ANN)
microcapsules
optimization