期刊文献+

多小波消噪算法在局部放电检测中的应用 被引量:67

Application of Multi-wavelet Based on Denoising Algorithm in Partial Discharge Detection
下载PDF
导出
摘要 在简单介绍多小波理论及其消噪算法的基础上,将其应用于抑制局部放电检测中的噪声干扰。局部放电是具有多种形态的非平稳信号,针对常见的4种形态的局部放电脉冲,以均方误差为衡量指标,通过蒙特卡罗仿真分析,研究了小波与多小波在不同局部放电模型下的消噪效果,并就二者提取多态性局部放电的性能进行了比较。研究结果表明,多小波对局放的先验知识要求较低,能够有效地处理多种形态的局放信号,在抑制噪声干扰的同时,能够保留更完整的局部放电信息。 After briefly introducing the theory of multi-wavelet based on denoising algorithm, it was applied to detect the signals of partial discharge. Partial discharges were nonstationary electric signals with various modes. In the contribution, denoising performance of multi-wavelet and wavelet under different mode of partial discharge were analyzed by Monte-Carlo simulation. Furthermore, the capability of extracting the multi-mode partial discharges was demonstrated. The results show that, compared with wavelet, multi-wavelet depends less on the prior knowledge of partial discharge, can process partial discharge with various modes, and preserves more signal features while removing noise from the measured data.
出处 《中国电机工程学报》 EI CSCD 北大核心 2007年第6期89-95,共7页 Proceedings of the CSEE
关键词 多小波 小波 局部放电 多态性 白噪声 multi-wavelets wavelet partial discharge multi-mode white noise
  • 相关文献

参考文献23

二级参考文献41

  • 1谢尔.札曼,朱德恒,金显贺,谈克雄.局部放电在线监测中的自适应数字滤波系统[J].高电压技术,1994,20(3):33-37. 被引量:17
  • 2朱雪龙.应用信息论基础(Base of Information Theory''s Application)[M].北京:清华大学出版社(Beijing:Tsinghua University Press),2000..
  • 3程正兴(Cheng zhengxing).小波分析算法和应用(Algorithm and application of wavelet analysis )[M].西安:西安交通大学出版社(Xi''an:Xi''an Jiaotong University Press),1998..
  • 4Nagesh V, Gururaj B I. Evaluation of digital filters for rejecting discrete spectral interference in on-site PD measurements[J]. IEEE Transactions on Electrical Insulation, 1993, 28(1): 73-85.
  • 5Figueiredo M A T, Nowak R D. Wavelet-based image estimation: an empirical bayes approach using jeffreys' noninformative prior[J]. IEEE Trausactious on Image Processing, 2001, 10(9): 1322-1331.
  • 6Crouse M S, Nowak R D, Baraniuk R G. Wavelet-based statistical signal processing using hidden markov models[J]. IEEE Transactions on Signal Processing, 1998, 46(4): 886-902.
  • 7Ronen O, Rohlicek J R, Ostendorf M. Parameter estimation of dependence tree models using the EM algorithm[J]. IEEE Signal Processing Letters, 1995, 2(8): 157-159.
  • 8Rabiner L R. A tutorial on hidden markov models and selected applications in speech recognition[C]. Proceedings of The IEEE,February 1989.
  • 9Kramer S C, Sorenson H W. Bayesian parameter estimation[J]. IEEE Transactions on Automatic Control, 1988, 33(2): 217-222.
  • 10Brace A G, Donoho I M, Martin R D. Denoising and robust nonlinear wavelet analysis[J]. Wavelet Application, 1994, 24(22): 1-12.

共引文献200

同被引文献633

引证文献67

二级引证文献608

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部