期刊文献+

基于时间序列分析的Web服务器DDoS攻击检测 被引量:4

Detecting DDoS attacks against Web server using time series analysis
下载PDF
导出
摘要 提出了一种基于时间序列分析的DDoS攻击检测方法。该方法利用网络流量的自相似性,建立Web流量时间序列变化的自回归模型,通过动态分析Web流量的突变来检测针对Web服务器的DDoS攻击。在此基础上,通过对报警数据的关联分析,获得攻击的时间和位置信息。实验结果表明:该方法能有效检测针对Web服务器的DDoS攻击。 Distributed Denial of Service(DDoS) attack is a major threat to the availability of Web service.The inherent presence of self-similarity in Web traffic motivates the applicability of time series analysis in the study of the burst feature of DDoS attack.This paper presents a method of detecting DDoS attacks against Web server by analyzing the abrupt change of time series data obtained from Web traffic.Time series data are specified in reference sliding window and test sliding window,and the abrupt change is modeled using Auto-Regressive(AR) process.By comparing two adjacent non-overlapping windows of the time series, the attack traffic can be detected at a time point.Combined with alarm correlation and location correlation,not only the presence of DDoS attack,but also its occurring time and location can be determined.The experimental results in a test environment are ilhstrated to justify our method.
作者 李更生
出处 《计算机工程与应用》 CSCD 北大核心 2007年第7期135-138,共4页 Computer Engineering and Applications
基金 上海市科学技术委员会科研计划资助项目(No.045115006)
关键词 分布式拒绝服务攻击 自回归模型 时间序列 WEB服务器 Distributed Denial of Service (DDoS) Auto-Regressive model time series Web server
  • 相关文献

参考文献11

  • 1Garber L.Denial-of-Service attacks rip the Internet[J].IEEE Computer,2000,33 (4):12-17.
  • 2Moore D,Voelker G M,Savage S.Inferring Internet Denial-of-Service activity[C]//Proc of 2001 Security USENIX Symposium.Washington:ACM Press,2001:9-22.
  • 3Jelena M,Peter L R.A taxonomy of DDoS attack and DDoS defense mechanisms[J].Computer Communication Review,2004,34(2):39-53.
  • 4Tao P,Christopher L,Kotagiri R.Proactively detecting distributed denial of service attacks using source IP address monitoring[C]//Third International IFIP-TC6 Networking Conference.Berlin Heidelberg:Springer,2004:771-782.
  • 5Seo J,Lee C,Moon J.Defending DDoS attacks using network traffic analysis and probabilistic packet drop[C]//GCC 2004 Workshops.Berlin Heidelberg:Springer,2004:390-397.
  • 6Mark E C,Azer B.Self-similarity in World Wide Web traffic:evidence and possible causes[J].IEEE/ACM Transactions on Networking,1997,5 (6):835-846.
  • 7Chao C S,Yang D L,Liu A C.A LAN fault diagnosis system[J].Computer Communications,2001,24(14):1439-1451.
  • 8Cabrera Joao B D,Lewis L,Qin X Z,et al.Proactive intrusion detection and distributed denial of service attacks-a case study in security management[J].Journal of Network and Systems Management,2002,10(2):225-254.
  • 9Brockwell P J,Davis R A.Time series:theory and methods[M].New York:Springer-Verlag,2001.
  • 10Brownlee N.Using NeTraMet for production traffic measurement[C]//the 7^th International Symposium on Integrated Network Management(IM2001).Seattle,USA:IEEE Press,2001:213-226.

同被引文献17

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部