摘要
设P为一给定的对称正交矩阵,记AARnP={A∈Rn×n‖AT=-A,(PA)T=-PA}.讨论了下列问题:问题给定X∈Cn×m,Λ=diag(λ1,λ2,…,λm).求A∈AARPn使AX=XΛ.问题设A~∈Rn×n,求A*∈SE使‖A^-A*‖=infA∈SE‖A^-A‖,其中SE为问题的解集合,‖.‖表示Frobenius范数.研究了AARPn中元素的通式,给出了问题解的一般表达式,证明了问题存在唯一逼近解A*,且得到了此解的具体表达式.
Let P ∈ R^n×m such that P^T = P, P^-1 = P^T. Set AARГ^N = {A ∈ R^n×m || A^T = A, (PA)^T = PA}. This paper discuss the following two problems:
Problem Ⅰ. Given X E ∈^n×m, A = diag(λ1, λ2,…, λm,). Find A ∈ AARГ^n such that AX = XA.
Problem Ⅱ. Given ^~A ∈ R^n×m. Find A^* ∈ SE suchthat ||^~A-A^*|| = A∈SE inf ||^~A- A|| , where SE is the solution set of Problem Ⅰ, ||·|| is the Frobenius norm.
In this paper, the general expression of the elements in AARP^n is studied, and the sufficient and necessary conditions under which SE is nonempty are obtained. The general form of SE has been given. The expression of the solution A^* of Problem Ⅱ is presented.
出处
《数学的实践与认识》
CSCD
北大核心
2007年第4期102-108,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金(60572114
10671026)
湖南省教育厅(04C099)资助