期刊文献+

任意Banach空间Φ-强伪压缩映射不动点的Ishikawa迭代逼近

Ishikawa Iterative Approximation for Fixed Point of Φ-Strongly Pseudocontractive Mappings Arbitrary Banach Spaces
原文传递
导出
摘要 文章借助于对偶映射的定义,给出了任意Banach空间中LipschitzΦ-强伪压缩映射不动点的Ishikawa迭代收敛定理的简化证明,并且推广了目前相应的已知结果. By virtue of definition of duality mapping, we give a brief proof for Ishikawa iterative approximation for fixed point of Ф-strongly pseudocontractive mappings in arbitrary Banach spaces, and extend the recent corresponding known results.
作者 汪志明
机构地区 唐山学院基础部
出处 《数学的实践与认识》 CSCD 北大核心 2007年第4期129-132,共4页 Mathematics in Practice and Theory
关键词 LipschitzФ-强伪压缩映射 ISHIKAWA迭代 不动点 一致光滑BANACH空间 Lipschitz Ф-strongly pseudocontractive maps Ishikawa iteration fixed point uniformly smooth Banach spaces
  • 相关文献

参考文献6

  • 1Chidume C E. Convergence theorems for strongly pseudo-contractive and strongly accretive maps[J]. J Math Anal Appl. 1998. (258):254--264.
  • 2Osilike M O. Iterative solution of nonlinear dO-strongly accretive operator equations in arbitrary Banach spaces[J].Nonlinear Analysis, 1996, 2 (200) : 259--271.
  • 3Liu L S. Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces[J]. J Math Anal Appl, 1995, (194):114--125.
  • 4Chang S S, Cho Y J, Lee B S, Jung J S, Kang S M. herative approximations of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces [J]. J Math Anal Appl, 1998,(224) : 149--165.
  • 5Xue Z Q, Zhou H Y. Cho Y J. Iterative solutions of nonlinear equations for m-accretive operators in Banach spaces[J]. J Nonlinear and Convex Anal, 2000, 3(1) :313--320.
  • 6Zhou H Y. Iterative solution of nonlinear equations involving strongly accretive operators without the Lipschitz assumption[J]. J Math Anal Appl. 1997, (213):296--307.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部