期刊文献+

定常不可压阀Navier-Stokes方程的两重网格算法 被引量:1

A Two-grid Method for the Steady Incompressible Penalized Navier-Stokes Equations
下载PDF
导出
摘要 分析了定常不可压阀Navier-Stokes(N-S)方程两重网格算法(TGM)的收敛性.给出了误差估计.得出了如果粗细网格尺寸h和H满足H=O(h3-1s)(s=0(n=2);s=12(n=3))时,这种算法和标准有限元算法(FEM)具有相同的收敛精度,但是由于TGM的简单运算,节省了计算量.给出了试验数值,验证了理论分析的正确性. A two-grid method (TGM) of the steady incompressible penalized Navier-Stokes equations is analyzed and an error estimate is given. If the coarse size H and the fine size h satisfy H=O(h1/3-s) (s= 0(n=2) ;s=1/2(n=3)) this method has the same. convergence accuracy as the usual finite element method (FEM). But TGM can save a lot of computation time for its brief calculation. Moreover, a numerical test is given to verify the above results.
出处 《甘肃科学学报》 2007年第1期10-14,共5页 Journal of Gansu Sciences
关键词 阀Navier-Stokes方程 两重网格算法 误差估计 penalized Navier-Stokes equations two-grid method error estimate
  • 相关文献

参考文献9

  • 1Layton W. A Two-grid Discretization Method for the Navier-Stokes Equations[J]. Computers Math Applic, 1993,26(2):33-38.
  • 2Xu J. Two-grid Discretization Techniques for Linear and Nonlinar PDFs[J]. Siam J Numer Anal, 1996, 33(5): 1759-1777.
  • 3Ammi A A O. Martine Marion, Nolinear Galerkin Methods and Mixed Finite Element:Two-grid Algorithms for the Navier-Stokes Equations[J]. Number Math, 1994,68:189-213.
  • 4Marion M, Xu J. Error Estimates on a New Nonlinear Galerkin Method Based on two-grid Finite Elements[J]. Siam J Number Anal,1995,32(4) : 1170-1184.
  • 5李振东,庞智强.工业环境污染统计的一种抽样方法[J].甘肃科学学报,2002,14(2):27-31. 被引量:1
  • 6Olshanskii M A. Two-grid Method and Some a Priori Estimates in Unsteady Navier-Stokes Calculations[J]. Journal of Computational and Applied Mathematics, 1999,104:173-191.
  • 7Yin-nian He,Dong-sheng Li,Kai-Tai Li(College of Science, Xi’an Jiaotong University, Xi’an 710019, China).NONLINEAR GALERKIN METHOD AND CRANK-NICOLSONMETHOD FOR VISCOUS INCOMPRESSIBLE FLOW[J].Journal of Computational Mathematics,1999,17(2):139-158. 被引量:2
  • 8Layton W, Tobiska L. A Two-grid Method with Backtracking for the Navier-Stokes Equations[J]. Siam J Numer Anal. 1998, 35(5):2035-2051.
  • 9Girauh V, Raviart P A. Finite Element Methods for the Navier-Stokes Equations:Theory and Algorithms[M]. Berlin, Springer. 1986.

二级参考文献1

  • 1刘怀高 李振东.应用概率统计[M].兰州:兰州大学出版社,2000.276-281.

共引文献1

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部