期刊文献+

实数遗传算法的改进及性能研究 被引量:42

Improvement of Real-valued Genetic Algorithm and Performance Study
下载PDF
导出
摘要 提出一种粒子群优化方法(PSO)与实数编码遗传算法(GA)相结合的混合改进遗传算法(HIGAPSO).该方法采用混沌序列产生初始种群、非线性排序选择、多个交叉后代竞争择优和变异尺度自适应变化等改进遗传操作;并通过精英个体保留、粒子群优化及改进遗传算法(IGA)三种策略共同作用产生种群新个体,来克服常规算法中收敛速度慢、早熟及局部收敛等缺陷.通过四个高维典型函数测试结果表明该方法不但显著提高了算法的全局搜索能力,加快了收敛速度;而且也改善了求解的质量及其优化结果的可靠性,是求解优化问题的一种有潜力的算法. A new evolutionary learning algorithm (HIGAPSO) based on a hybrid of real-code genetic algorithm (GA) and particle swarm optimization (PSO) is proposed in this paper.In this hybrid algorithm some improved genetic mechanisms,for example initial population produced by chaos sequence, non-linear ranking selection, competition and selection among several crossover offspring and adaptive change of mutation scaling are adopted;also the new population is produced through three approaches,i.e. elitist strategy, PSO strategy and the improved genetic algorithm (IGA) strategy. Through testing four benchmark functions with large dimeusionality, the experimental results show that this new algorithm not only improves the global optimization performance and quickens the convergence speed,but also obtains robust results with good quality, which indicates it is a promising approach for solving global optimization problems.
作者 任子武 伞冶
出处 《电子学报》 EI CAS CSCD 北大核心 2007年第2期269-274,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60474069)
关键词 遗传算法 粒子群优化方法 竞争择优 变异尺度 genetic algorithm particle swarm optimization competition and selection mutation scaling
  • 相关文献

参考文献12

  • 1Leung F H F,Lam H K,Ling S H,Tam P K S. Tuning of the structure and parameters of a neural network using an improved genetic algorithm[ J]. IEEE Tram on Neural Networks,2(1)3,14 (1) :79 - 88.
  • 2李萌,沈炯.基于自适应遗传算法的过热汽温PID参数优化控制仿真研究[J].中国电机工程学报,2002,22(8):145-149. 被引量:102
  • 3Krohling R A,Rey J P.Design of optimal disturbance rejection PID controllers using genetic algorithm [ J ]. IEEE Trans Evol Comput,2001,5(1) :78 - 82.
  • 4Fogel D B. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence[ M] .New York: IEEE Press,2000.
  • 5陈小平,于盛林.实数遗传算法交叉策略的改进[J].电子学报,2003,31(1):71-74. 被引量:52
  • 6Sareni B, Krahenbuhl L. Fitness sharing and niching methods revisited[J]. IEEE Tram on Evol Comput, 1998,2(3):97- 106.
  • 7范瑜,金荣洪,耿军平,刘波.基于差分进化算法和遗传算法的混合优化算法及其在阵列天线方向图综合中的应用[J].电子学报,2004,32(12):1997-2000. 被引量:44
  • 8Chen Y W,Narieda S, Yamashita K. Blind nonlinear system identification based on a conslrained hybrid genetic algorithm [J]. IEEE, Trans on Instrum Mea,2003,52(3) :898 - 902.
  • 9Kennedy J,Eberhart R, Particle swarm opfimization[ A] .Proc of IEEE, Int Conf Neural Networks[ C] .Perth,Australia, 1995. 4:1942 - 1948.
  • 10J Robinson, Y Rahmat-Samii. Particle swarm optimization in electronmagnetics[ J]. IEEE, Trans Antennas Propag, 2004, 52 (2) :397 - 407.

二级参考文献24

  • 1张昀,Proceedings of 30th Intern Geol Congr.1,1997年
  • 2张昀,中国科学.B,1995年,749页
  • 3张昀,前寒武纪生命演化与化石记录,1989年
  • 4Randy L Haupt.Phase-only adaptive nulling with a genetic algorithm[J].IEEE Transactions on Antenna and Propagation,1997,45(6),1009-1014.
  • 5Lal Chand Godara.Handbook of Antennas in Wireless Communication[M].Boca Raton,London,New York,Washington,D.C:CRC Press,2002.
  • 6Beng-King Yeo.Array Failure correction with a genetic algorithm[J].IEEE Transactions on Antenna and Propagation,1999,47(5):823-828.
  • 7Edward E Altshuler.Design of a loaded monopole having hemispherical coverage using a genetic algorithm[J].IEEE Transactions on Antenna and Propagation,1997,45(1):1-4.
  • 8R Storn,K Price.Minimizing the real functions of the ICEC'96 contest by differential evolution[A].Proceedings of IEEE International Conference onEvolutionary Computation[C].Nagoya,Japan:IEEE,1996.842-844.
  • 9F J.Ares-Pena.Genetic algorithm in the design and optimization of antenna array pattern[J].IEEE Transactions on Antenna and Propagation,1999,47(3):506-510.
  • 10F J Ares.Application of genetic algorithm and simulated annealing technique in optimizing the aperture distributions of antenna array patterns[J].Electronics Letters,1996,32(3):148-149.

共引文献197

同被引文献488

引证文献42

二级引证文献431

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部