期刊文献+

线性对流占优扩散问题的交替方向差分流线扩散法 被引量:2

ALTERNATING-DIRECTION DIFFERENCE STREAMLINE DIFFUSION METHOD FOR LINEAR CONVECTION-DOMINATED DIFFUSION PROBLEMS
原文传递
导出
摘要 本文将交替方向法与差分流线扩散法(简称FDSD方法)相结合,对于二维线性对流占优扩散问题构造了一种交替方向差分流线扩散格式,给出了格式的实现过程并就稳定性及误差进行了分析.此格式不但实现了对数值求解二维对流扩散方程降维的目的,并且保持了FDSD方法良好的稳定性及高精度阶的基本性质.最后给出数值算例说明算法的有效性. Alternating-direction method is combined with finite difference streamlinediffusion(FDSD) method to create the alternating-direction FDSD procedures for two-dimensional linear convection-dominated diffusion equation. Realization of the scheme and the analysis of stability and error are presented. This scheme not only realizes the purpose of lowering the dimension of solving the two-dimension linear convection diffusion equation, but also keeps the favorable stability and high precision of FDSD method. Finially, numerical examples are presented to clarify the method.
作者 张阳
出处 《计算数学》 CSCD 北大核心 2007年第1期49-66,共18页 Mathematica Numerica Sinica
基金 国家自然科学基金(103016)资助项目
关键词 交替方向法 差分流线扩散方法 稳定性 误差估计 alternating-direction method, finite difference streamline diffusion method, stability, error estimate
  • 相关文献

参考文献10

  • 1Douglas J,Dupont J.Alternating-direction Galerkin method on rectangles,Proc Symprism on Numerical Solution of Partial Differential Equation Ⅱ.B.Hubbard,ed.,New York:Acdemic Press,1971:133-214.
  • 2Fairweather G.Finite element Galerkin methods for differential equations,Lecture notes in Pure and Applied Mathematics.New York:Marcel Dekker,Inc.,1978,34.
  • 3Marry Fanett Wheeler.A priori L2 error estimates for Galerkin approximation to parabolic partial differential equations,SIAM J.Numer.Anal.,1973,10(4):723-758.
  • 4Dendy J E,Jr.An analysis of some Galerkin schemes for the solution of nonlinear timedependent problems.SIAM J.Numer.Anal..1975,12(4):541-565.
  • 5Hughes T J R.Streaming upwind formulation for advection,Navier-stokes and first order hyperbolic equations,Fourth Internat.Conf.on F.E.M.in Fluids,Tokyo 1982.
  • 6Johnson C.Finite element method for convection-diffusion problems,Fifth International Symposium on Computing Methods in Engineering and Applied Science,INRIA,Versailles,Dec.1981:14-18.
  • 7Sun Che and Shen Hui.Finite-difference streamline-diffusion method for time-dependent convection-diffusion equations.Numer.Math.A Jounal of Chinese Universities (English Series),1998,7(1):72-85.
  • 8孙澈,张阳,魏强.对流扩散问题的流线扩散有限元分析[J].计算数学,1996,18(3):253-260. 被引量:14
  • 9Ciarlet P G.,The Finite Element Methods for Elliptic Problems,North Holland Publishing Company,1978.
  • 10Dendy J E,Jr.,Fairweather G.Alternating direction Gakerkin methods for parabolic and hyperbolic problems on rectangular polygons.SIAM J.Numer.Anal.,1975,12(2):144-163.

二级参考文献1

  • 1孙澈,The First China.Japan Joint Seminar on Numerical Mathematics,1992年

共引文献13

同被引文献12

  • 1由同顺.二维对流扩散方程满足最大值原理的MMOCAA差分方法[J].高等学校计算数学学报,2004,26(4):289-297. 被引量:2
  • 2高少芹,刘晓俊,贾尚晖.对流扩散问题的部分迎风有限元方法[J].河北大学学报(自然科学版),2007,27(1):12-15. 被引量:2
  • 3冯青华,王文洽.二维对流扩散方程的一类交替分组方法[J].山东师范大学学报(自然科学版),2007,22(2):1-5. 被引量:1
  • 4Bramble J H. A second order finite difference analog of the first biharmonic boundary value problem[ J]. Number. Math. , 1966 (4) :236-249.
  • 5Douglas J Jr, Huang C S, Pereira F. The Modified Method of Charawith Adjusted Advection [ J ]. Number Math, 1999,83 : 353 - 369.
  • 6BRAMBLE J H. A second order finite difference analog of the first biharmonic boundary value problem[J].Numer Math, 1966,4 : 263-249.
  • 7DOUGLAS J JR, HUANG C S, PEREIRA F. The modified method of chara with adjusted advection[J].Numer Math, 1999,83 : 353-369.
  • 8李庆杨,王能超,易大义.数值分析[M].第4版.北京:清华大学出版社,2001.
  • 9BRANDT A. Multi-level adaptive solution to boundaryvalue problems[J]. Math Compute, 1977,31 : 333-390.
  • 10W·哈克布思.多重网格方法[M].北京:科学出版社,1988.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部