期刊文献+

一类非线性发展方程的渐近吸引子 被引量:3

Asymptotic Attractors of the Nonlinear Evolution Equation in Bounded Domain
下载PDF
导出
摘要 无穷维动力系统的基本理念是将一个无穷维系统约化为一个有限维系统,但是,要进一步研究约化后的有限维系统的动力学行为是非常困难的,因为它们的结构是未知的。为了克服这个困难,诸如近似惯性流形等概念已被引入,对于Navier-Stokes方程,其近似惯性流形的存在性问题已被讨论,它是通过挤压性质找到一个Lipschitz函数,说明其整体吸引子位于该函数图的某个小领域,而文中是通过构造一个有限维解序列,说明长时间后其趋于方程的整体吸引子,理论上给出了一类发展方程的渐近吸引子的构造方法. The basic principle of infinite-dimensional dynamic system is to try to reduce the original infinite-dimensional system to an infinite-dimensional system. However,due to the unknown structure of the reduced system, it is difficult to describe its dynamical behaviour. To overcome this difficulty, the idea of approximate inertial manifolds is introduced, for NSE, the existence of AIM was studied, it is shown that the global attractor lies within a neighborhood of the graph of an Lipschitz function by the squeezing property. In this paper, by constructing a finite dimensional solution sequence, we will prove that it tends to the global attractor, theoretically, this provides a metod of constructing the asymptotic attractors, theoretically, this provides a method of constructing the asymptotic attractors for the evolution equations.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第2期136-138,148,共4页 Journal of Chongqing University
基金 重庆市高校中青年骨干教师基金资助项目(20020126) 重庆大学骨干教师基金资助项目(2003018)
关键词 非线性发展方程 解序列 整体吸引子 渐近吸引子 nonlinear evolution equation global attractor asymptotic attractors
  • 相关文献

参考文献6

  • 1R. TEMAN. Infinite-dimensional dynamical systems in mechanics and physics [ M]. New York:Spfing-Verlag, 1988.
  • 2郭柏灵.无穷维动力系统[M].北京:国防工业出版社,2000..
  • 3郭柏灵.非线形演化方程[M].上海:上海科技教育出版社,1995.
  • 4J. C. ROBINSON. Infinite-dimensional dynamical systems:an introduction to dissipative parabolic PDEs and the theory of global attractors [M]. Cambridge Uni. Press, 2001.
  • 5A. V. BABIN. Attractors for Navier-stokes equations [ A ].in:Hardbook of Mathematical Fluid Dynamics[ C]. Elsvier,2003,169-222.
  • 6王冠香,刘曾荣.Kuramoto-Sivashinsky方程的渐近吸引子[J].应用数学学报,2000,23(3):329-336. 被引量:18

二级参考文献2

  • 1Wang G,Ph. D. Thesis,1996年
  • 2Qian M,NonlinearSciences Today, preprint

共引文献30

同被引文献28

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部