摘要
本文研究了半直线上修正Kawahara方程初边值问题的局部可解性.通过对相应强迫初值问题建立有关Duhamel强迫项的Strichartz型估计,证明了当初值函数φ(x)∈H^8(R_x^+),边值函数f(t)∈H^(s+2/5)(R_t^+)且1/4■s<2时,半直线上修正Kawahara方程的初边值问题存在局部解.
In this paper we study the local solvability of the initial-boundary problem for the modified Kawahara equation on the half line. By setting up some Strichartz-type estimates of the Duhamel forcing terms for a corresponding forced initial value problem, we prove that the initial-boundary problem of the modified Kawahara equation on the half line is locally solvable if the initial function belongs to H^s(Rx^+) and the boundary .function belongs to H^(s+2)/5(Rt^+) with 1/4≤s〈2.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2007年第2期241-254,共14页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(10571014)