期刊文献+

半直线上修正Kawahara方程的初边值问题

The Initial-Boundary Value Problem for the Modified Kawahara Equation on the Half Line
原文传递
导出
摘要 本文研究了半直线上修正Kawahara方程初边值问题的局部可解性.通过对相应强迫初值问题建立有关Duhamel强迫项的Strichartz型估计,证明了当初值函数φ(x)∈H^8(R_x^+),边值函数f(t)∈H^(s+2/5)(R_t^+)且1/4■s<2时,半直线上修正Kawahara方程的初边值问题存在局部解. In this paper we study the local solvability of the initial-boundary problem for the modified Kawahara equation on the half line. By setting up some Strichartz-type estimates of the Duhamel forcing terms for a corresponding forced initial value problem, we prove that the initial-boundary problem of the modified Kawahara equation on the half line is locally solvable if the initial function belongs to H^s(Rx^+) and the boundary .function belongs to H^(s+2)/5(Rt^+) with 1/4≤s〈2.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2007年第2期241-254,共14页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10571014)
关键词 修正Kawahara方程 初边值问题 存在性 modified Kawahara equation initial-boundary problem existence
  • 相关文献

参考文献3

二级参考文献50

  • 1Kaup, D. J.: On the inverse scattering for cubic eigenvalue problems of the class equations. Stud. Appl. Math., 62, 189-195 (1980).
  • 2Kupershmidt, B. A.: A super Korteweg-de-Vries equatons: an integrable system. Physics Letters, A, 102,213-218 (1994).
  • 3Benilov, E. S., Grimshaw, R. and Kuznetsova, E. P.: Dressing method Darboux transformation and generalized restrict ed flows for the KdV hierarchy. Physica D, 169, 270 (1993).
  • 4Grimshaw, R. and Pavlov, M.: Exact periodic steady solutions for nonlinear wave equations: A new approach. Physics Letters A, 251(4). 25-30 (1999).
  • 5Hunter, J. K. and Scheurle, J.: Existence of perturbed solitary wave solutions to a model equation for water waves. Physica D, 32, 235-268 (1988).
  • 6Hu, X., Wang, D. and Qian, X.: Soliton solutions and symmetries of the 2+1 dimensional Kaup-Kupershmidt equation. Physics Letters, A, 262(15), 409-415 (1999).
  • 7Boyd, J. P.: Weakly non-local solitons for capillary-gravity waves: fifth degree Korteweg-de Vries equation. Physica D, 48(2), 129-146 (1991).
  • 8Buffoni, B, Champneys, A. R. and Toland, J. F.: Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system. J. Dyn. Diff. Eq., 8, 221-123 (1996).
  • 9Champneys, A. R, and Groves, M. D.: A global investigation of solitary-wave solutions to a two-parameter model for water waves. J. Fluid. Mech., 342, 199- 222 (1997).
  • 10Champneys, A. R. and Toland, ,J. F.: Hunting for homoclinic orbits in reversible systems: a shooting technique. NorHinearity, 6, 665-671 (1993).

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部