摘要
本文针对非线性不等式约束优化问题,提出了一个新的可行序列等式约束二次规划算法.在每次迭代中,该算法只需求解三个相同规模且仅含等式约束的二次规划(必要时求解一个辅助的线性规划),因而其计算工作量较小.在一般的条件下,证明了算法具有全局收敛及超线性收敛性.数值实验表明算法是有效的.
In this paper, a feasible sequential equality constrained quadratic programming algorithm is proposed to solve the nonlinear inequality constrained optimization. Per single iteration, it is only neccessary to sovle three equality constrained quadratic programmings with the same scale (or in addition, a linear programming), so the computational effort is reduced. The theoretical analysis shows that the algorithm is global and superlinear convergence under some suitable conditions. Numerical results show that the method in this paper is effective.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2007年第2期281-290,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(10501009
60471039
10661005)
关键词
不等式约束优化
SQP算法
等式约束二次规划
Inequality constrained optimization
SQP method
equality constrained quadratic programming