期刊文献+

非可换模糊逻辑系统PL~*及其完备性 被引量:8

Non-Commutative Fuzzy Logic System PL~* and Its Completeness
原文传递
导出
摘要 首先建立了非可换R0 t-模,以此为语义背景将模糊逻辑形式系统L^*拓广到非可磬情形,提出了新的模糊逻辑形式系统PL^*,证明了系统PL^*的可靠性定理.其次,引入PL^*-代数及其滤子概念,得到PL^*-代数的正规素滤子定理,借此证明了PL^*系统的完备性.最后说明了PR0 t-模及PL^*系统可能的应用方向. Firstly, non-commutative R0 t-norms (called PRo t-norms) are established, and based on PRo t-norms a new fuzzy logic formal system PL^* is constructed as a non-commutative generalization of the formal system L^*. The soundness theorem of PL^* is proved. Secondly, the notion of PL^*-algebra is introduced, and the filter theory of PL^*-algebra is constructed. By the normal prime filter theorem of PL^*-algebra, the completeness theorem of formal system PL^* is proved. Finally, the role of formal system PL^* in application field is explained.
作者 张小红
机构地区 宁波大学数学系
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2007年第2期421-442,共22页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(60474022) 浙江省自然科学基金(Y605389)
关键词 伪T-模 非可换模糊逻辑 正规素滤子定理 pseudo-t-norm non-commutative fuzzy logic normal prime filter theorem
  • 相关文献

参考文献26

  • 1Abrusci V. M., Phase semantics and sequent calculus for pure noncommutative classical linear logic, J. Symb. Logic, 1991, 56: 1403-1451.
  • 2Abrusci V. M., Ruet P., Non-commutative logic Ⅰ: the multiplicative frequent, Annals Pure Appl Logic, 2000, 101: 29-64.
  • 3Casadio C., Non-commutative linear logic in linguistics, Grammars, 2001, 4: 167-185.
  • 4Hajek P., Observations on non-commutative fuzzy logic, Soft Computing, 2003, 8: 38-43.
  • 5Jenei S., Montagna F., A proof of standard completeness for non-commutative monoidal t-norm logic, Neural Network World, 2003, 5: 481-489.
  • 6Lenstean I., Non-commutative Lukasiewicz propositional logic, Archive for Mathematical Logic, to appear.
  • 7Hajek P., Metamathematics of fuzzy logic, Dordrecht: Kluwer Academic Publishers, 1998.
  • 8Esteva F., Godo L., Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy Sets and Systems, 2001, 124: 271-288.
  • 9Ying M. S., A logic of approximate reasoning, J. Symbolic Logic, 1994, 59: 830-837.
  • 10Ying M. S., Implications operators in fuzzy logic, IEEE Trans. Fuzzy Systems, 2002, 10(1): 88-91.

同被引文献96

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部