期刊文献+

基于Contourlet变换的彩色图像融合算法 被引量:51

Color Image Fusion Algorithm Using the Contourlet Transform
下载PDF
导出
摘要 以红外和彩色可见光图像为研究对象,提出一种基于Contourlet变换的彩色图像融合算法.算法首先通过IHS(Intensity-Hue-Saturation)变换将彩色可见光图像从RGB颜色空间变换到IHS空间,进而利用Contourlet变换和加权融合规则将I分量图像与红外图像进行融合,然后将得到的灰度融合图像进行线性拉伸以获得与I分量相同的均值和方差,最后用拉伸后的灰度融合图像替换原来的I分量,并通过IHS逆变换得到最终的RGB彩色融合图像.算法一方面将Contourlet变换这一新的数学工具引入到图像融合中,另一方面提供了一种新的红外和可见光图像的彩色融合方法.实验结果表明,同样采用本文的彩色融合方法,Contourlet变换的融合结果优于小波变换,而且本文彩色融合方法的融合性能明显超过传统IHS变换融合法. With the particular research on thermal and visual images, a color image fusion algorithm using the contourlet transform is presented.Firstly, through the IHS (Intensity-Hue-Saturation) transform, the color visual image is converted from RGB color space to IHS space. Next, with the contourlet transform and weighted average fusion rule, the intensity component and thermal image are merged into a grayscale image, which is then linearly stretched to have the same mean and variance as the intensity component. Finally,the stretched grayscale fused image replaces the original intensity component,and the final RGB color fused image is achieved by the inverse IHS transform with the H, S and replacement component. On the one hand, with the proposed scheme, the contourlet transform as a new mathematical tool is introduced to image fusion area. On the other hand, the algorithm provided a new color image fusion strategy of thermal and visual images. The experimental results show that, with the proposed color fusion method,the fused image produced by the contourlet transform is of better quality than that obtained through the wavelet transform. Moreover, the color fusion approach obviously improves fusion performance over the traditional IHS transform fusion method.
作者 李光鑫 王珂
出处 《电子学报》 EI CAS CSCD 北大核心 2007年第1期112-117,共6页 Acta Electronica Sinica
关键词 彩色图像融合 CONTOURLET变换 小波变换 IHS变换 color image fusion contourlet transform wavelet transform IHS transform
  • 相关文献

参考文献18

  • 1G Pajares,J M Cruz.A wavelet-based image fusion tutorial[J].Pattern Recognition,2004,37(9):1855-1872.
  • 2Z Zhang,R S Blum.A categorization and study of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application[J].Proceedings of the IEEE,1999,87(8):1315-1326.
  • 3G Piella.A general framework for multiresolution image fusion:from pixels to regions[J].Information Fusion,2003,4(4):259-280.
  • 4M N Do,M Vetterli.Contourlets[A].G V Welland.Beyond Wavelets[C].New York:Academic Press,2003.
  • 5M N Do,M Vetterli.The contourlet transform:an efficient directional multiresolution image representation[J].IEEE Transactions on Image Processing,2005,14(12):2091-2106.
  • 6E J Candès.Ridgelets:Theory and Applications[D].USA:Department of Statistics,Stanford University,1998.
  • 7E J Candès,D L Donoho.Curvelets-A surprisingly effective nonadaptive representation for objects with edges[A].L L Schumaker,et al.Curves and Surfaces[C].Nashville:Vanderbilt University Press,1999.
  • 8S G Mallat.A Wavelet Tour of Signal Processing[M].San Diego,California:Academic Press,1998.
  • 9D A Scribner,J M Schuler,P R Warren,et al.Infrared color vision:separating objects from backgrounds[J].Proceedings of SPIE,1998,3379:2-9.
  • 10Z Wang,D Ziou,C Armenakis,et al.A comparative analysis of image fusion methods[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(6):1391-1402.

二级参考文献12

  • 1蒋晓瑜,高稚允,周立伟.小波变换在多光谱图像融合中的应用[J].电子学报,1997,25(8):105-108. 被引量:21
  • 2Pu Tian, Ni Guo-qiang. Contrast-based image fusion using the discrete wavelet transform[J]. Optical Engineering, 2000, 39(8):2075 - 2082.
  • 3Petrovie V. Multilevel image fusion[J]. Proceedings of SPIE, 2003,5099 : 87 - 96.
  • 4Piella G. A general framework for multiresolution image fusion: from pixels to regions[J]. Elsevier Science, Information Fusion, 2003,4(4) : 259 -280.
  • 5Zhang Zhong, Blum R S. A categorization and study of multiscaledecomposition - based image fusion schemes with a performance study for a digital camera application[J]. Proceedings of the IEEE, 1999,87(8) :1315 -1326.
  • 6Burt P J, Kolczynski R J. Enhanced image capture through fusion[A]. In: Proceedings of IEEE 4th International Conference on Computer Vision[C]. Berlin, Germany, 1993:173 - 182.
  • 7Mallat S G. A Wavelet Tour of Signal Processing[M]. San Diego,California: Academic Press, i998.
  • 8Daubechies I. Ten Lectures on Wavelets[M]. Philadelphia,Pennsylvania: Society for Industrial and Applied Mathematics, 1992.
  • 9Piella G. New quality measures for image fusion[A]. In:Proceedings of the 7th International Conference on Information Fusion( Fusion 2004)[C]. Stockholm, Sweden, 2004 : 542 - 546.
  • 10刘贵喜,杨万海.一种像素级多算子红外与可见光图像融合方法[J].红外与毫米波学报,2001,20(3):207-210. 被引量:36

共引文献12

同被引文献427

引证文献51

二级引证文献275

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部