期刊文献+

ANISOTROPIC POLARIZATION TENSORS FOR ELLIPSES AND ELLIPSOIDS

ANISOTROPIC POLARIZATION TENSORS FOR ELLIPSES AND ELLIPSOIDS
原文传递
导出
摘要 In this paper we present a systematic way of computing the polarization tensors, anisotropic as well as isotropic, based on the boundary integral method. We then use this method to compute the anisotropic polarization tensor for ellipses and ellipsoids. The computation reveals the pair of anisotropy and ellipses which produce the same polarization tensors. In this paper we present a systematic way of computing the polarization tensors, anisotropic as well as isotropic, based on the boundary integral method. We then use this method to compute the anisotropic polarization tensor for ellipses and ellipsoids. The computation reveals the pair of anisotropy and ellipses which produce the same polarization tensors.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2007年第2期157-168,共12页 计算数学(英文)
基金 Partly supported by Korea Science and Engineering Foundation grant R02-2003-000-10012-0 Brain Korea 21 at the School of Mathematical of Seoul National University
关键词 Anisotropic polarization tensor Integral equation ELLIPSOID Anisotropic polarization tensor, Integral equation, Ellipsoid
  • 相关文献

参考文献1

二级参考文献14

  • 1H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements,Lecture Notes in Mathematics, Volume 1846, Springer-Verlag, Berlin, 2004.
  • 2H. Ammari and H. Kang, Reconstruction of elastic inclusions of small volume via dynamic measurements, Appl. Math. Opt., 54 (2006), 223-235.
  • 3H. Ammari, H. Kang, and M. Lim, Effective parameters of elastic composites, Indiana Univ. J.Math., 55 (2006), 903-922.
  • 4H. Ammari, H. Kang, G. Nakamura, and K. Tanuma, Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion, J. Elasticity, 67 (2002), 97-129.
  • 5L. Escauriaza and J.K. Seo, Regularity properties of solutions to transmission problems, Trans.Amer. Math. Soc., 338:1 (1993), 405-430.
  • 6J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems,Proc. Royal Soc. London, Series A, 246:1226 (1957), 376-396.
  • 7V.V. Jikov, S.M. Kozlov, and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994.
  • 8H. Kang, E. Kim, and J. Lee, Identification of Elastic Inclusions and Elastic Moment Tensors by Boundary Measurements, Inverse Problems, 19 (2003), 703-724.
  • 9H. Kang and K. Kim, Anisotropic polarization tensors for ellipses and ellipsoids, preprint, 2005.
  • 10T. Lewinski and Sokolowski, Energy change due to the appearance of cavities in elastic solids,International J. Solids Structures, 40 (2003), 1765-1803.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部