期刊文献+

溶胶-凝胶法制备的纳米PrO_y-ZrO_2固溶体的表层和体相结构 被引量:1

Structure on Surface and the Bulk Shell of Nanosized PrO_y-ZrO_2 Solid Solution Prepared by Sol-gel Method
下载PDF
导出
摘要 用改进的柠檬酸溶胶-凝胶法制备了纳米PrOr-ZrO2固溶体.采用XRD,Raman和TEM等技术对纳米PrOy-ZrO2进行了表征.结果表明,改进的柠檬酸溶胶-凝胶法制备的PrOy-ZrO2固溶体于650℃焙烧后晶粒大小在5—10nm之间;于950℃焙烧(Pr〉16%)后晶粒大小在20nm左右.Pr能有效地使ZrO2稳定在四方或立方晶相.随Pr含量的增加,PrOr-ZrO2固溶体的物相结构从单斜相逐步向四方和立方相转变.XRD和Raman得到的物相结构的差别表明,PrOy-ZrO2固溶体表层和体相结构存在不一致性,随Pr含量增加,体相逐步按照m→t→c的物相转变,表层按照m→t→t^n的物相转变.表层更易生成低对称性和无序结构. The characterization for PrOy-ZrO2 solid solutions prepared by improved sol-gel method was performed by means of Raman, XRD, TEM and so on. It is found that the grain size of PrOy-ZrO2 solid solution calcined at 650 ℃ is 5-10 nm, and that of PrOy-ZrO2 solid solution calcined at 950 ℃ [x(Pr) 〉 16% ] is about 20 nm. At a higher Pr content, phase transformation towords a higher-symmetrical phase ( tetragonal or cubic) was observed. The results of phase analysis obtained by Raman spectroscopy were different from the corresponding results of XRD, which implies a structure difference between the surface and the bulk shell of the samples. With the increase of the Pr content, the m→t→w phase tramsformation occurred in the bulk area and the m→t→t'' phase tramsformation occurred in the surface area. The surface region is more easily to form a low symmetry and disorder structure.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2007年第2期325-329,共5页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:20473075)资助
关键词 PrO-ZrO2复合氧化物 Uamsn光谱 X射线粉末衍射 溶胶-凝胶法 PrOy-ZrO2 Raman spectrum XRD Sol-gel method
  • 相关文献

参考文献21

  • 1Sobol A. A., Voronko Yu. K.. J. Phys. Chem. Solids[J], 2004,65(6): 1103-1112.
  • 2关宏宇,邵长路,刘益春,韩冬雪,杨兴华,于娜.静电纺丝法制备ZrO_2纳米纤维[J].高等学校化学学报,2004,25(8):1413-1415. 被引量:6
  • 3翁端,丁红梅,吴晓东,徐鲁华,陈震.LaMnO_3稀土纳米材料及催化性能[J].物理化学学报,2001,17(3):248-251. 被引量:18
  • 4Raghavan S. , Wang H. , Porter W. D. , et al.. Acts Mater. [J], 2001,49(1) : 169-179.
  • 5Stefanic G. , Music S.. Croat. Chem. Acta[J] , 2002, 75(3) : 727-767.
  • 6He H. , Dai H. X. , Au C. T.. Catal. Today[J], 2004, 90(3/4): 245-254.
  • 7Narula C. K. , Haack L. P. , Chun W.. J. Phys. Chem. B[J], 1999, 103:3634-3639.
  • 8Narula C. K. , Allison J. E. , Beauer D. R. , et al.. Chem. Mater. [J] , 1996, 8(5) : 984-1003.
  • 9Logan A. D. , Shelef M.. J. Mater. Res. [J], 1994, 9(2) : 468-475.
  • 10Corradi A. B., Bondioli F., Ferrari A. M.. Chem. Mater. [J], 2001, 13(12): 4550-4554.

二级参考文献8

共引文献22

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部