摘要
讨论定义于|z|<1内的v-值亚纯代数体函数w=W(z)(v=1时,W(z)就是亚纯函数).证明了定理如果W(z)满足条件limr→1T(r)log11-r=∞则存在一个Julia点eiθ0(0≤θ0≤2π),使得对于任意给定的数δ(0<δ<π2),在扇形域Δ(θ0,δ)=z|argz-θ0|<δ,|z|<1{}内,对任何复数值a,总有limr→1n(r,Δ(θ0,δ),a)log11-r=∞最多除去2v个Julia例外值a.当W(z)是亚纯函数时。
In |z|<1 ,for the v value meromorphic algebroidal function W=W(z) (if v=1 ,then W(z) is a meromorphic function),if lim r→1T(r) log 11-r=∞ ,then there is a Julia point e iθ 0 (0≤θ 0≤2π) ,and such that lim r→1n(r,Δ(θ 0,δ),a) log 11-r=∞ ,for any given number δ(0<δ<π2) and any complex value a which is in the domain of circular sector Δ(θ 0,δ)=z| arg z-θ 0|<δ,|z|<1 .At most it can be excluded 2v Julia exeption values a .But if W(z) is a meromorphic function then there are 2 exeption values a .
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
1996年第6期544-551,共8页
Journal of Southwest China Normal University(Natural Science Edition)