期刊文献+

纵向数据非参数混合效应模型的一个局部不变估计 被引量:1

A LOCAL CONSTANT ESTIMATOR FOR NONPARAMETRIC MIXED-EFFECTS MODELS WITH LONGITUDINAL DATA
原文传递
导出
摘要 非参数核回归方法近年来已被用于纵向数据的分析(Lin和Carroll,2000).一个颇具争议性的问题是在非参数核回归中是否需要考虑纵向数据间的相关性.Lin和Carroll (2000)证明了基于独立性(即忽略相关性)的核估计在一类核GEE估计量中是(渐近)最有效的.基于混合效应模型方法作者提出了一个不同的核估计类,它自然而有效地结合了纵向数据的相关结构.估计量达到了与Lin和Carroll的估计量相同的渐近有效性,且在有限样本情形下表现更好.由此方法可以很容易地获得对于总体和个体的非参数曲线估计.所提出的估计量具有较好的统计性质,且实施方便,从而对实际工作者具有较大的吸引力. Nonparametric kernel regression methods have been proposed for longitudinal data analysis recently (Lin and Carroll, 2000). A controversial question is whether the correlation among longitudinal data should be considered in the nonparametric kernel regression. Lin and Carroll (2000) have shown that the kernel estimator based on working-independence (ignoring the correlation) is most (asymptotically) efficient in a class of kernel GEE estimators. In this paper we propose a different class of kernel estimators based on the mixed-effects model approach that incorporates the correlation structure of longitudinal data naturally and efficiently. We show that our estimator achieves the same asymptotic efficiency as Lin and Car- roll's estimator, but performs better in finite samples. The nonparametric curve estimates for both population and individual subjects (clusters) can be readily obtained from the proposed method. These good properties of the proposed estimator as well as easy implementation are attractive to practitioners.
作者 梁华 师义民
出处 《系统科学与数学》 CSCD 北大核心 2007年第1期102-112,共11页 Journal of Systems Science and Mathematical Sciences
基金 NIH基金(AI562247 AI059773) 国家自然科学基金(70471057)资助.
关键词 交叉核实(CV) 核回归 混合效应模型 非参数回归 相对效率. Cross-validation (CV), kernel regression, mixed-effects models, nonparamet- ric regression, relative efficiency.
  • 相关文献

参考文献19

  • 1Shi M,Weiss R E and Taylor J M G.An analysis of pediatric CD4 counts for acquired immune deficiency syndrome using flexible random curves.Applied Statist.,1996,45:151-63.
  • 2Rice J A and Wu C O.Nonparametric mixed effects models for unequally sampled noisy curves.Biometrics,2001,57:253-259.
  • 3Wang Y.Mixed-effects smoothing spline ANOVA.J.R.Statist.Soc.B,1998,60:159-174.
  • 4Zhang D,Lin X,Raz J and Sowers M.Semiparametric stochastic mixed models for longitudinal data.J.Am.Statist.Assoc.,1998,93:710-719.
  • 5Lin X and Carroll R J.Nonparametric function estimation for clustered data when the predictor is measured without/with error.J.Am.Statist.Assoc.,2000,95:520-34.
  • 6Hoover D R,Rice J A,Wu C O and Yang L P.Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data.Biometrika,1998,85:809-22.
  • 7Wu C O,Chiang C T and Hoover D R.Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data.J.Am.Statist.Assoc.,1998,93:1388-402.
  • 8Jones M C.Do not weight for heteroscedasticity in nonparametric regression.Aus.J.Statist.,1993,35:89-92.
  • 9Wand M P and Jones M C.Kernel Smoothing.London:Chapman and Hall.1995.
  • 10Laird N M and Ware J H.Random effects models for longitudinal data.Biometrics 1982,38:963-74.

同被引文献21

  • 1朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 2Hoppe H, DeRose T, Duehamp T, et al. Surface reconstruction from unorganized points[C]//Proc of ACM SIGGRAPH 1992. Reading, MA: Addison-Wesley, 1992: 71-81.
  • 3Boissonnat J D. Geometric structures of three-dimensional shape reconstruction [J].ACM Trans on Graphics, 1984, 3 (4) : 266-86.
  • 4Edelsbrunner H, Mticke E. 3D alpha shapes [J]. ACM Trans on Graphics, 1994, 13(1): 43-72.
  • 5Veltkamp R C. Boundaries through scattered points of unknown density [J]. Graphical Models Imag Process, 1995, 57(6): 441-52.
  • 6Kirkpatrick D G, Radke J D. A framework for computational morphology [J]. Comput Geometry, 1985, 3(3) : 217-228.
  • 7Bernardini F, Mittleman J, Rushmeier H, et al. The ballpivoting algorithm for surface reconstruction [J]. IEEE Trans on Visualization Comput Graphics, 1999, 5(4): 349- 59.
  • 8Huang J, Menq C H. Combinatorial manifold mesh reconstruction and optimization from unorganized points with arbitrary topology [J]. Computer-Aided Design, 2002, 34: 149-165.
  • 9Petitjean S, Boyer E. Regular, non-regular point sets: properties and reconstruction [J]. Comput Geometry, 2001, 19:101-126.
  • 10Silverman B W. Density Estimation for Statistics and Data Analysis [M] ser. Monographs on Statistics and Applied Probability. New York:Chapman & Hall, 1986.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部