期刊文献+

用可解子群的阶刻画有限单群 被引量:2

原文传递
导出
摘要 设G是有限群,S是有限单群.在这篇文章中,我们证明:如果G和S的可解子群的阶集合相同,那么G与S同构,或G和S同构于Bn(Q)和Cn(q),其中q是奇数,n≥3.
出处 《中国科学(A辑)》 CSCD 北大核心 2007年第2期189-199,共11页 Science in China(Series A)
基金 国家自然科学基金(批准号:10571128) 苏州市高层次人才资助项目
  • 相关文献

参考文献22

  • 1Thompson J G. Nonsolvable finite groups all of whose local subgroups are solvable I. Bull Amer Math Soc,1986, 74:383-437
  • 2Mazurov V D, Sitnikov V M, Syskin S A. Finite groups whose solvable subgroup are 2-closed or 2'-closed.Algebra I Logika, 1979, 9:313-341
  • 3Li S R, Zhao Y Q. Some finite nonsolvable groups characterized by their solvable subgroups. Acta Math Sinica, New Series, 1988, 4(1): 5-13
  • 4Li X H, Wang D J. Some finite nonsolvable groups characterized by teir solvable subgroups. Communications in Algebra, 1996, 24(7): 2221-2233
  • 5Abe S. A characterization of some finitr simple groups by orders of their solvable subgroups. Hokkaido Mathematical Journal, 2002, 31:349-361
  • 6Kimmerle W, Lyons R, Sanding R, et al. Composition factors from the group ring and Artin's theorem on orders of simple groups. Proc London Math Soc, 1990, 60(3): 89-122
  • 7Aschbacher M, Seitz G N. Involutions in chevalley groups over field of even order. Nagoya Math J, 1976,63:1-91
  • 8Cohen A M, Liebeck M W, Saxl J, et al. The local maximal subgroups of exceptional groups of Lie type,finite and Algebraic. Proc London Math Soc, 1992, 64(3): 21-48
  • 9Liebeck M W, Praeger C E, Saxl J. Transitive subgroups of primitive permutation groups. Journal of Algebra, 2000, 234:291-361
  • 10Liebeck M W, Saxl J, Seitz G M. Subgroups of maximal rank in exceptional groups of Lie type. Proc London Math Soc, 1992, 65(3): 297-325

共引文献5

同被引文献12

  • 1王殿军.用极大子群阶之集刻划有限单群[J].西南师范大学学报(自然科学版),1993,18(1):18-21. 被引量:8
  • 2陈重穆,施武杰.关于C_(pp)单群[J].西南师范大学学报(自然科学版),1993,18(3):249-256. 被引量:16
  • 3施武杰.关于有限单群的阶.科学通报,1993,38(4):296-298.
  • 4Li X H, A characterization of Finite Simple Group [ J ]. Journal of Algebra,2001,245:620-649.
  • 5H. Kurzweil, B. Stellmacher. The Theory of Finite Groups [ M ]. New York: Springer-verlag,2004.
  • 6徐明曜.有限群导引(上册)[M].北京:科学出版社,1982.
  • 7ROBERT A. The finite simple groups[M]. New York: Springer Berlin, 2007.
  • 8KURZWEIL H, STELLMACHCR B. The thery of finite groups[M]. New York: Springerverlay, 2004.
  • 9KLEIDMAN P, LIEBCK M. The subgroup structure of the finite classical groups[M]. UK; Cambridge Univ Press, 1998.
  • 10徐明耀.有限群导引(下册)[M].北京:科学出版社.2001.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部