期刊文献+

关于极大S^2NS阵的一个注记

A Note on the Numbers of Nonzero Entries of Maximal S^2NS Matrices
下载PDF
导出
摘要 一个实方阵A称为是S2NS阵,若所有与A有相同符号模式的矩阵均可逆,且它们的逆矩阵的符号模式都相同.若A是S2NS阵且A中任意一个零元换为任意非零元后所得的矩阵都不是S2NS阵,则称A是极大S2NS阵.设所有n阶极大S2NS阵的非零元个数所成之集合为S(n),Z4(n)={1/2n(n-1)+4,…,1/2n(n+1)-1},除了2n+1到3n一4间的一段和Z4(n)外,S(n)得到了完全确定.本文将用图论方法证明Z4(n)∩S(n)=(?). A square real matrix A is called an S^2NS matrix, if every matrix with the same sign pattern as A is invertible, and the inverses of all such matrices have the same sign pattern. A matrix A is called a maximal S^2NS matrix, if A is an S^2NS matrix, but each matrix obtained from A by replacing one zero entry by a nonzero entry is not a S^2NS matrix. Let 8(n) be the set of numbers of nonzero entries of maximal S^2NS matrices with order n (≥), and Z4(n) = {1/2(n-1)+4,…,1/2n(n+1)-1}. We know that 8(n) has been described except for the numbers between 2n + 1 and 3n- 4 and the numbers in Z4(n). We prove Z4(n) ∩ 8(n) = φ by graphic method in this paper.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2007年第1期113-122,共10页 数学研究与评论(英文版)
基金 国家自然科学基金(10331020) 数学天元基金(10526019) 广东省博士科研启动基金(5300084).
关键词 符号 极大 S^2NS 矩阵 有向图 sign maximal S^2NS matrices digraphs
  • 相关文献

参考文献8

  • 1尤利华,邵嘉裕.极大S^2NS阵的分支数与非零元个数[J].高校应用数学学报(A辑),2005,20(4):424-440. 被引量:1
  • 2LIU Bo-lian,LAI Hong-jian.MatriCes in Combinatorics and Graph Theory[M].Kluwer Academic,2000.
  • 3BRUALDI R A,CHAVEY K L,SHADER B L.Bipartite graphs and inverse sign patterns of strong signnonsingular matrices[J].J.Combin.Theory Ser.B,1994,62:133-150.
  • 4BRUALDI R A,SHADER B L.Matriees of Sign-Solvable Linear Systems[M].Cambridge University Press,Cambridge,1995.
  • 5SHAO Jia-yu,HE Jin-ling,SHAN Hai-ying.Number of nonzero entries of S2NS matriCes and matriCes with signed generalized inverses[J].Linear Algebra Appl.,2003,373:223-239.
  • 6BASSETT L,MAYBEE J,QUIRK J.Qualitative economics and the scope of the correspondence principle[J].Econometrica,1968,36:544-563.
  • 7THOMASSEN C.When the sign pattern of a square matrix determines uniquely the sign pattern of its inverse[J].Lineax Algebra Appl.,1989,119:27-34.
  • 8BONDY J A,MURTY U S R.Graph Theory with Applications[M].Macmillan Press,New York,1976.

二级参考文献8

  • 1Liu B L,Lai H J.Matrices in Combinatorics and Graph Theory[M]. Dordrecht: Kluwer Academic,2000.
  • 2Brualdi R A,Chavey K L,Shader B L.Bipartite graphs and inverse sign patterns of strong sign-nonsingular matrices[J]. J Combin Theory, Ser B,1994,62:133-152.
  • 3Brualdi R A,Shader B L.Matrices of Sign-solvable Linear Systems[M]. Cambridge: Cambridge University Press,1995.
  • 4Shao J Y,He J L,Shan H Y.Number of nonzero entries of S^2NS matrices and matrices with signed generalized inverses[J].Linear Algebra Appl,2003,373:223-239.
  • 5Bassett L,Maybee J,Quirk J.Qualitative economics and the scope of the correspondence principle[J]. Econometrica,1968,36:544-563.
  • 6Thomassen C. When the sign pattern of a square matrix determines uniquely the sign pattern of its inverse[J]. Linear Algebra Appl,1989,119:27-34.
  • 7Gibson P M. Conversion of the permanent into the determinant[J]. Proc Amer Math Soc,1971,27:471-476.
  • 8Bondy J A,Murty U S R.Graph Theory with Applications[M]. New York: Macmillan Press,1976.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部