期刊文献+

实值非负函数关于集值序增函数的集值Riemann-Stieltjes积分 被引量:2

Set-Valued Riemann-Stieltjes Integral of Real Non-Negative Function with Respect to Set-Valued Order Increasing Function
下载PDF
导出
摘要 本文首先建立了实值非负函数关于集值序增函数的集值Riemann-Stieltjes积分,并讨论了集值Riemann-Stieltjes积分的性质,给出了集值Riemann-Stieltjes可积的充要条件,最后引入了集值Riemann-Stieltjes随机积分. In this paper, we establish the set-valued Riemann-Stieltjes integral of a real valued non- negative function with respect to set-valued order increasing function. Then, we discuss the properties of the set-valued Riemann-Stieltjes integral. Some sufficent and necessary conditions for Riemann-Stieltjes integrability are obtained. Finally, we introduce the set-valued Riemann-Stieltjes stochastic integral.
作者 薛红 王拉省
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2007年第1期135-144,共10页 数学研究与评论(英文版)
基金 陕西省教育厅自然科学专项基金(03JK063)
关键词 集值序增过程 集值Riemann-Stieltjes积分 集值随机积分 set-valued order increasing process set-valued Riemann-Stieltjes integral set-valued Riemann-Stieltjes stochastic integral
  • 相关文献

参考文献2

二级参考文献8

  • 1Zhang W X,Set-valued Stochastic Processes,1996年
  • 2He S W,Semimartingale Theory and Stochastic Calculus,1992年
  • 3Huang Z Y,Elements of Stochastic Analsysi,1988年
  • 4Hu D H,An Introduction to Stochastic Processes,1986年
  • 5Zhang W X,Set-valued Measures and Random Sets,1986年
  • 6Yu X T,The Geometric Theory in Banach Space,1986年
  • 7Yan J A,An Introduction to Martingales and Stochastic Integrals,1981年
  • 8B. K. Dam. Almost sure convergence of set-valued martingales and submartingales[J] 1992,Acta Mathematica Hungarica(3-4):197~205

共引文献17

同被引文献3

  • 1薛红,王拉省.集值函数关于实值单调非减函数的集值Riemann-Stieltjes积分[J].工程数学学报,2006,23(2):305-313. 被引量:6
  • 2Papageorgiou N S.On the theory of Banach space valued multifunction.1:integration and conditional expectation.2:set valued martingales and set valued measure[J] J.Multivariate Anal,1985,17(2):185-227.
  • 3PAPAGEORGIOU N S. On the theory of Banach space valued multifunction. 1: integration and conditional expectation. 2: set valued martingales and set valued measure[J]. J Multivariate Anal, 1985, 17(2): 185-227.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部