期刊文献+

一类不确定非完整机器人的不连续自适应镇定 被引量:1

Discontinuous adaptive stabilization of uncertain nonholonomic mobile robot
下载PDF
导出
摘要 通过对一类质心和几何中心不重合的两轮驱动移动机器人镇定问题的研究,提出一种不连续控制律,并针对质心和几何中心距离参数未知的情况,利用自适应技术对其进行修正,利用非线性系统反馈线性化的方法,证明了所提出的控制律,能使该类型移动机器人的位姿从任意0θ≠0的初始状态指数收敛到原点.利用仿真实验验证了控制律的有效性. Aimed at the stabilization of a two-driven wheeled mobile robot that there is a distance between the mass center and the geometrical center, a discontinuous controller is proposed. And aimed at the case that the distance between the mass center and the geometrical center is uncertain, the proposed controller is improved through adaptive technology. Using the feedback linearization method of the nonlinear system, it is proved that the proposed controller can exponentially stabilize the wheeled mobile robot from any initial state where θ0 # 0 to the origin. The simulation resuhs show the efficectiveness of the proposed controller.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2007年第1期161-164,共4页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(60174019 60474034)
关键词 轮式移动机器人 非完整系统 不连续指数镇定 自适应控制 wheeled mobile robot nonholonomic systems discontinuous exponential stabilization adaptive control
  • 相关文献

参考文献8

  • 1BROCKETT R W.Asymptotic stability and feedback stabilization In Differential Geometric Control Theory[M],Burkhauser:Boston,1983:181-191.
  • 2KOLMANOVSKY I,MCCLAMROCH N H.Development in nonholonomic control problems[J],IEEE Control System Magazine,1995,15 (6):20-36.
  • 3TAYEBI A,TADJINE M,RACHID A.Discontinuous control design for the stabilization of nonholonomic systems in chained form using the backstepping approach[C]//Proceedings of the 36th IEEE Conference on Decision and Control,San Diego:IEEE,1997:3089-3090.
  • 4TIAN Yuping,LI Shihua.Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control[J].Automatica,2002,38(7):1139-1146.
  • 5PRIEUR C,ASTOLFI A.Robust stabilization of chained systems via hybrid control[C]//Proceedings of the 41st IEEE Conference on Decision and Control,Las Vegas:IEEE,2002:522-527.
  • 6WU Weiguo,CHEN Huitang,WANG Yuejuan,et al.Adaptive exponential stabilization of mobile robots with uncertainties[C]//Proceedings of the 38th IEEE Conference on Decision and Control,Phoenix:IEEE,1999:3484-3489.
  • 7POURBOGHRAT F,KARLSSON M P.Adaptive control of dynamic mobile robots with nonholonomic constraints[J].Computers and Electrical Engineering,2002,28(6):599 -610.
  • 8KIM Min-Soeng,SHIN Jin-Ho,HONG Sun-Gi,et al.Designing a robust adaptive dynamic controller for nonholonomic mobile robots under modeling uncertainty and disturbances[J].Mechatronics,2003,13 (5):507-519.

同被引文献10

  • 1孙多青,霍伟,杨枭.含模型不确定性移动机器人路径跟踪的分层模糊控制[J].控制理论与应用,2004,21(4):489-494. 被引量:17
  • 2李传峰,王朝立.一类不确定非完整运动学系统的鲁棒镇定[J].北京航空航天大学学报,2007,33(4):427-430. 被引量:3
  • 3Brockett R W. Asymptotic stability and feedback stabilization[C ]//Differential Geometric control Theory. Boston, MA: Birkhauiser, 1983: 181-208.
  • 4Kolmanovsky I, McClamroch N H. Developments in nonholonomic control problems [J].Control Systems Magazine, IEEE, 1995,15(6):20-36.
  • 5Astolfi A. Exponential stabilization of a wheeled mobile robot via discontinuous control [J].Journal of Dynamic Systems, Measurement, and Control, 1999, 121(1) : 121-126.
  • 6Lee T C. Exponential stabilization for nonlinear systems with applications to nonholonomic systems[J]. Automatica, 2003, 39(6):1 045-1 051.
  • 7Marchand N, Alamir M. Discontinuous exponential stabilization of chained form systems[J].Automatica, 2003,39 (2) : 343-348.
  • 8Zairong X, Gang F, Jiang Z P, et al. A switching algorithm for global exponential stabilization of uncertain chained systems[J]. IEEE Transactions on Automatic Control, 2003,48(10):1 793- 1 798.
  • 9Hong Y, Wang J, Xi Z. Stabilization of uncertain chained form systems within finite settling time[J]. IEEE Transactions on Automatic Control, 2005, 50 (9) : 1 379-1 384.
  • 10Slotine J J E, Li W P. Applied Nonlinear Control[M]. New Jersey, gnglewood Cliffs.. Prentice Hall, 1991.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部