期刊文献+

基于霍特林变换的三维医学图像快速配准算法 被引量:1

Fast 3-D medical image registration algorithm using Hotelling transform
下载PDF
导出
摘要 提出了一种新的基于霍特林变换的三维医学图像快速配准算法,这是将数据压缩技术用于图像配准的一种创新性尝试。传统的基于灰度的方法需要考虑整个三维数据的灰度信息,计算复杂度大,无法满足临床需要。论文将Otus算法与互信息量技术相结合提出了一种新的图像分割算法,用于提取待配准物体,从而得到物体的向量表示;然后通过霍特林变换的平移和旋转性质完成配准。实验结果表明此方法能准确,快速地处理图像刚性配准问题,特别适用于三维医学图像的配准。 This paper presents a new 3-D image registration method based on the Hotelling transform.Compared with intensity based registration methods using the whole volume intensity information,the approach utilizes Hotelling transform to align images. The authors evaluate the effectiveness of this approach by applying it to the simulated and real brain image data(MR,CT,PET, and SPECT).The experimental results indicate that the algorithm is effective,especially for 3-D medical images.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第5期15-17,共3页 Computer Engineering and Applications
基金 国家重点基础研究发展规划(973)(the National Grand Fundamental Research 973 Program of China under Grant No.2003CB716103)
关键词 医学图像 霍特林变换 图像配准 互信息量 medical image Hotelling transform image registration mutual information
  • 相关文献

参考文献7

  • 1Maintz J B A,Viergever M A.A survey of medical image registration[J].Medical Image Analysis,1998,2(1):1-36.
  • 2Zitova B,Flusser J.Image registration methods:a survey[J].Image and Vision Computing,2003,21 (11):977-1000.
  • 3Maes F,Collignon A,Vandermeulen D,et al.Multimodality image registration by maximization of mutual information[J].IEEE Trans on Med Imaging,1997,16(2):189-198.
  • 4Pluim J,Maintz J,Viergever M.Mutual information based registration of medical images:a survey[J].IEEE Trans Med Imag,2003,22(8):986-1004.
  • 5Gonzales R C,Woods R E.Digital image prossing[M].2nd ed.Upper Saddle River,NJ:Prentice-Hall,2002.
  • 6Otsu N.A threshold selection method from gray-level histograms[J].IEEE Trans on Systems,Man,and Cybernetics,1979,9(1):62-66.
  • 7吕庆文,陈武凡.基于互信息熵差测度的医学图像自动优化分割[J].中国科学(E辑),2006,36(6):657-667. 被引量:11

二级参考文献20

  • 1陈武凡 鲁贤庆 陈建军.彩色图像边缘检测的新算法—广义模糊算子法[J].中国科学:A辑,1995,2:219-225.
  • 2Zhang Y,Brady M,Smith S.Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm.IEEE Trans Med Image,2001,20(1):45-57
  • 3Ruan S,Moretti B,Fadili J,et al.Fuzzy Markovian segmentation in application of magnetic resonance images.Comp Vision Image Under,2002,85:54-69
  • 4Feng Y,Chen W.Brain MR image segmentation using fuzzy clustering with spatial constraints based on Markov random field theory.In:Proc of MIAR 2004 (LNCS 3150,Beijing).Berlin:Springer-Verlag,2004.188-195
  • 5Yang F,Jiang T.Pixon-based image segmentation with Markov random fields.IEEE Trans Image Process,2003,12(12):1552-1559
  • 6Dunn J C.A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters.J Cybern,1973,3:32-57
  • 7Bezdek J C.Pattern Recognition with Fuzzy Objective Function Algorithms.New York:Plenum Press,1981
  • 8Geman S,Geman D.Stochastic relaxation,Gibbs distributions and the Bayesian restoration of images.IEEE Trans Pattern Anal Machine Intell,1984,6 (6):721-741
  • 9Pina R K,Puetter R C.Bayesian image reconstruction:The pixon and optimal image modeling.Publ Astron Soc Pac,1993,105:630-637
  • 10Maes F,Collignon A.Multimodality image registration by maximization of mutual information.IEEE Trans Med Imag,1997,16(2):187-198

共引文献10

同被引文献19

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部