期刊文献+

基于间隔偏最小二乘法的农产品近红外光谱谱区选择方法 被引量:22

Selection of the Efficient Wavelength Regions in Agricultural Product NIR Spectroscopy based on Interval Partial Least-Squares(iPLS)
下载PDF
导出
摘要 怎样建立准确的农产品内在质量的近红外光谱预测模型,一直是国内外近红外光谱分析者的研究重点,而现有的农产品近红外光谱数据建立光谱预测模型时,都要面临选择合适的光谱谱区的问题。本研究提出一种间隔偏最小二乘法的农产品近红外光谱谱区选择方法,并将其应用于建立苹果糖度近红外光谱模型。结果表明,该方法可以减小建模运算时间,剔除噪声过大的谱区,使最终建立的农产品品质检测近红外光谱模型的预测能力和精度更高。 Calibration is nowadays one of the most important fields of chemometrics, and agricultural product spectral data are perhaps the most common type of data to which chemometrics techniques are applied. GraphicaUy-oriented local multi- variate calibration modeling procedures called interval partial least-squares (iPLS) was applied to select the efficient spectral regions that provided the lowest prediction error. The optimal combinations of 5 spectral intervals among 40 intervals that selected by iPLS yielded a good result, iPLS model could diminish runtime and select the optimal intervals.
出处 《现代科学仪器》 2007年第1期86-88,共3页 Modern Scientific Instruments
关键词 近红外 间隔偏最小二乘法 农产品 NIR spectroscopy interval partial least squares agricultural product
  • 相关文献

参考文献4

二级参考文献24

  • 1褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528-542. 被引量:565
  • 2应义斌,刘燕德,傅霞萍.苹果有效酸度的近红外漫反射无损检测[J].农业机械学报,2004,35(6):124-126. 被引量:28
  • 3金同铭,崔洪昌.苹果中蔗糖、葡萄糖、果糖、苹果酸的非破坏检测[J].华北农学报,1997,12(1):91-96. 被引量:23
  • 4Eugene Kupferman.NIR sensing of apples in Japan[J].Tree Fruit Postharvest Journal,1997,8(2):4--9.
  • 5Gerald G Dull,Gerald S Birth,Doyle A Smittle,et a1.Near infrared analysis of soluble solids in intact cantaloupe[J].Journal of Food Science,1989,54(2):393—395.
  • 6Slaughter D C.Nondestructive determination of internal quality in peaches and nectarines[J].Transactions of the ASAE,1995,38(2):617—623.
  • 7V Andrew McGlone.Sumio Kawano.Firmness,dry-matter and soluble-solids assessment of postharvest kiwifruitby NIR spectroscopy[J].Postharvest Biology and Technology,1998,13:131—141.
  • 8Ze'ev Schmilovitch,Aharon Hoffman,Haim Egozi,et a1.Maturity determination of fresh dates by near infrared spectrometry[J].J Sci Food Agric,1999,79:86—90.
  • 9Bochereau L,Bourgine P,Palagos B.A method for prediction by combining data analysis and neural networks:Application to prediction of apple quality using near-infrared spectra[J].J Agric Engng Res,1992,51:207—216.
  • 10Makoto Murakami,Jun—ichi Himoto,Kazuhiko Itoh.Analysis of apple quality by near infrared reflectance spectroscopy[J].J Fac Agr Hokkaido Univ,1994,66(1):51—61.

共引文献112

同被引文献337

引证文献22

二级引证文献198

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部