期刊文献+

Henon方程多解计算的分歧方法 被引量:4

Bifurcation method for solving multiple solutions of the Henon equation
下载PDF
导出
摘要 运用Liapunov—Schmidt约化和对称破缺分歧的方法,计算了Henon方程边值问题的多个具有不同对称性的数值解. The theory and algorithm of symmetry - breaking bifurcation are applied to finding multiple solutions to the boundary value problem of the Henon equation. Nontrivial solutions with different symmetries are visualized.
出处 《上海师范大学学报(自然科学版)》 2007年第1期1-6,共6页 Journal of Shanghai Normal University(Natural Sciences)
基金 国家自然科学基金(N10_10671130) 上海市教委科研基金(No.05DZ07) 上海重点学科建设项目(No.T0401) 上海市科委重点项目(n0.06JCl4092).
关键词 HENON方程 多解 分歧 对称破缺 Henon equation multiple solutions bifurcation symmetry-breaking
  • 相关文献

参考文献4

  • 1CHOI Y S,MCKENNA P J.A mountain pass method for the numerical solutions of semi-linear elliptic problems[J].Nonlinear Anal,1993,20:417-437.
  • 2DING Z H,COSTA D,CHEN G.A high-linking algorithm for sign-changing solutions of semi-linear elliptic equations[J].Nonlinear Anal,1999,38:151-172
  • 3LI Y,ZHOU J X.A minimax method for finding multiple critical points and its application to semi-linear PDEs[J].SIAM J Sci Comput,2002,23:840-865.
  • 4杨忠华,李业忠.求解非线性椭圆型方程边值问题的分歧方法[J].上海师范大学学报(自然科学版),2005,34(2):17-20. 被引量:5

二级参考文献4

  • 1ZHONGHAI DING, DAVID COSTA ,GOONG CHEN. A high-linking algorithm for sign-changing solutions of semilinear elliptic equations[J]. Nonlinear Anal , 1999, 38 : 151 - 172.
  • 2P H RABINOWITZ. Minimax methods in critical point theory with applications to differential equations [J]. Conf Board Math Sci Reg Conf Ser Math ,1986 ,65:1 -44.
  • 3Y S CHOI, P J MCKENMA. Mountian pass method for the numerical solution of semilinear elliptic problems [J]. Nonlinear Anal ,1993 ,20:417 -437.
  • 4GOONG CHEN, JIANXIN ZHOU, WEI - MING NI. Algorithms and visualization for solutions of nonlinear elliptic equations [J]. International Journal of Bifurcation and Chaos ,2000,10 (7): 1565 - 1612.

共引文献4

同被引文献33

  • 1杨忠华,李业忠.求解非线性椭圆型方程边值问题的分歧方法[J].上海师范大学学报(自然科学版),2005,34(2):17-20. 被引量:5
  • 2Amann H.Supersolution,monotone iteration and stability[J].J Diff Eq ,1976,21(3):367-377.
  • 3Amann H,Crandall M G.On some existence theorems for semilinear elliptic equations[J].Indian Univ Math J ,1978,27(5):779-790.
  • 4Chang K C.Infinite Dimensional Morse Theory and Multiple Solution Problems [M].Boston:Birkhauser,1993.
  • 5Struwe M.Variational Methods,A Series of Modern Surveys in Math [M].Berlin:SpringerVerlag,1996.
  • 6Pao C V.Block monotone iterative methods for numerical solutions of nonlinear elliptic equations[J].Numer Math ,1995,72(2):239-262.
  • 7Deng Y ,Chen G,Ni W M ,et al.Boundary element monotone iteration scheme for semilinear elliptic partial differential equations[J].Math Comput ,1996,65(5):943-982.
  • 8Choi Y S,McKenna P J.A mountain pass method for the numerical solutions of semilinear elliptic problems[J].Nonlinear Anal ,1993,20(6):417-437.
  • 9Ding Z H ,Costa D ,Chen G.A high-linking algorithm for sign-changing solutions of semilinear elliptic equations[J].Nonlinear Anal ,1999,38(3):151-172.
  • 10Li Y,Zhou J X.A minimax method for finding multiple critical points and its applications to semilinear PDE[J].SIAM J Sci Comput ,2002,23(4):840-865.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部