期刊文献+

Environmental Isotopes Study on Geothermal Water in Guanzhong Basin,Shaanxi Province 被引量:6

Environmental Isotopes Study on Geothermal Water in Guanzhong Basin,Shaanxi Province
下载PDF
导出
摘要 There exists abundant thermal water recourses in Guanzhong basin, Shaanxi province (northwestern China). With the deepening of exploitation for thermal aquifer nowadays, the information about the origin and movement of thermal water is limited by using traditional methods. This paper applies environmental isotope techniques to offer direct constraints on the recharge and movement of thermal water and improve the geological and hydrogeological data- base in Guanzhong Basin. The research on the environmental isotopes shows that the geothermal water of the area is mainly recharged by meteoric water. The temperature of meteoric water which replenishes geothermal water in the study area is -16 ℃. The estimated age of recharging the geothermal water is 13.3-28.2 ka based on the isotope analysis, belonging to the last glacial period in Late Quaternary. The source of replenishment of the geothermal water is thought to have been derived from glacial snow-melt water with an elevation higher than 1 500 m (ASL) in the north side of Qinling Mountain. The isotopic analysis denotes that the geothermal water in the southern Guanzhong basin is the mixture of net thermal water and normal temperature groundwater. Based on calculating the percentage of the mixture, nearly half of cold groundwater had participated the circulating of the geothermal water. However, in the center part of the basin, some artificial factors such as mismanage of pumping are probably the reason for the mixturing. The temperature range of the geothermal reservoirs in the basin is estimated at about 80-121 ℃ based on calculation of both SiO2 geothermometer and thermal water saturation index, which are basically in accordance with the measured temperature of thermal water. Based on the replenishment time and mixture extent with cold water, the thermal water in the studied area can be classified into three parts: mixed thermal water replenished by modern meteoric water; mixed thermal water replenished by both modern and ancient meteoric water, and deep circulating thermal water replenished by ancient meteoric water without mixture. There exists abundant thermal water recourses in Guanzhong basin, Shaanxi province (northwestern China). With the deepening of exploitation for thermal aquifer nowadays, the information about the origin and movement of thermal water is limited by using traditional methods. This paper applies environmental isotope techniques to offer direct constraints on the recharge and movement of thermal water and improve the geological and hydrogeological database in Guanzhong Basin. The research on the environmental isotopes shows that the geothermal water of the area is mainly recharged by meteoric water. The temperature of meteoric water which replenishes geothermal water in the study area is -16 ℃. The estimated age of recharging the geothermal water is 13.3-28.2 ka based on the isotope analysis, belonging to the last glacial period in Late Quaternary. The source of replenishment of the geothermal water is thought to have been derived from glacial snow-melt water with an elevation higher than 1 500 m (ASL) in the north side of Qinling Mountain. The isotopic analysis denotes that the geothermal water in the southern Guanzhong basin is the mixture of net thermal water and normal temperature groundwater. Based on calculating the percentage of the mixture, nearly half of cold groundwater had participated the circulating of the geothermal water. However, in the center part of the basin, some artificial factors such as mismanage of pumping are probably the reason for the mixturing. The temperature range of the geothermal reservoirs in the basin is estimated at about 80-121 ℃ based on calculation of both SiO2 geothermometer and thermal water saturation index, which are basically in accordance with the measured temperature of thermal water. Based on the replenishment time and mixture extent with cold water, the thermal water in the studied area can be classified into three parts: mixed thermal water replenished by modern meteoric water; mixed thermal water replenished by both modern and ancient meteoric water, and deep circulating thermal water replenished by ancient meteoric water without mixture.
出处 《Journal of China University of Mining and Technology》 EI 2007年第1期45-48,共4页 中国矿业大学学报(英文版)
基金 Project 2005003 supported by the Natural Science Foundation of Shaanxi Province
关键词 同位素 水地球化学 关中盆地 陕西 地下热水 geothermal tater meteoric water environmental isotope net thermal water
  • 相关文献

同被引文献67

引证文献6

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部