摘要分别给出了半正定矩阵Khatri-Rao积和Hermitian矩阵Khatri-Rao积的迹不等式.Some trace inequalities of the Khatri - Rao products about the positive semi - definite matrices and Hermitian matrices are respectively given.
1Bo-Ying Wang and Fuzhen Zhang.Trace and eigenvalue inequalities for ordinary and hadamard products of positive semidefinite Hermitian matrices.SIAM J.Matrix Appl.1995.16:1173-1183
1[1]George Visick.A quantitative version of the observation that the Hadamard product is aprincipal submatrix of the kronecker product[J]Linear Algebra Appl,2000,304:45-68.
2[2]R.A.Horn,C.R.Johnson.Topics in Matrix Analysis[M]Cambridge University press,Cambridge,1991.
3[3]T.Ando.Concavity of Certain maps on positive definite matrices and applications to Hadamard products[J]Linear Algebra Appl,1979,26:203-241.
4[4]R.A.Horn,C.R.Johnson,Matrix Analysis[M]Cambridge University press,Cambridge,1985.
5[5]C.R.Johnson.partitioned and Hadamard product matrix inequalities[J]J.Res.Nat.Bur,Standards,1978,83:585-591.
6[6]B.-Y.Wang,F.Zhang.Shur Complements and Matrix Inequalities of Hadamard Products[J]Linear and Multilinear Algebra,1997,43:315-326.
7Zhang Fuzhen,Matrix theory,1999年
8王伯英,控制不等式基础,1990年
9James V. Bondar, Schur majorization inequalities for symmetrized sums with applications to tensor products[J], Linear Algebra Appl. 360(2003) : 1-13.
10R. A. Horn, C. R. Johnson, Topics in Matrix Analysis [M].Cambridge ,1991.
4WANG B Y, ZHENG F Z. Trace and eigenvalue inequalities for ordinary and hadamard products of positive semidefinite Hermitian matrices[J]. SIAMJ Matrix Appl, 1995, 16:1 173-1 183.
5WANG B Y, ZHANG F. Shar complements and matrix inequalities of Hadamard products[J]. Linear and Multilinear Algebra 1997,43:315-326.
6GEORGE V. A quantitative version of the observation that the Hadamard product is a principal submatrix of the kronecker product[J]. Linear Algebra Appl, 2000, 304:45-68.